
Discriminative Models of Text
Classification and Regression �

�.� Data and task definition . . . ��
Statistical task ��
NLP task ��

�.� Familiar modelling ideas . . ��
Why not tabular CPDs? . . . ��
Why not naive Bayes? ��

�.� Feature Functions ��
�.� Generalised Linear Models . ��

Bernoulli GLM ��
Categorical GLM ��
Poisson GLM ��
Normal/Gaussian GLM ��

�.� General principles for prescrib-
ing GLMs ��

�.� Parameter Estimation ��
Stochastic gradient-based optimi-

sation ��
Regularisation ��

From Random Experiments to Natural Lan-
guage Processing – by Wilker Aziz. This
book has not been published yet.

To complete this class you need to know the following:

�. From probability theory:
I discrete and continuous random variables, probability mass

function (pmf), probability density function (pdf);
�. From statistics:

I pmfs/pdfs of single-parameter (e.g., Bernoulli, Poisson), two-
parameter (e.g., Beta, Gamma, Normal), and multi-parameter
(e.g., Categorical, Dirichlet) distributions;

�. From linear algebra:
I vector and matrix multiplication;

�. From calculus:
I derivatives, partial derivatives, and gradient.

We often need to analyse documents in terms of diverse properties. Where
these properties are discrete and finite (e.g., negative/neutral/positive,
or spam/no-spam, or politics/sport/science) we talk about text analysis
as text classification (or text categorisation), where these properties are
numerical we talk about text analysis as text regression.

Examples of numerical quantities we may be interested in:

I Number of people attending an event, based on tweets posted
about that event in a given interval of time. Example: �,���,���
people are predicted to attend the pride in Amsterdam.

I Demand for a product (expressed in number of items), based on
reviews on an online platform. Example: we need to stock some
���,��� iPads.

I Market value of a product (expressed in euros), based on description.
This guitar tuner must be worth EUR ��.��.

I Polling data (expressed as percentages), based on how voters talk
about candidates on social media, or based on a survey voters filled
in (where the survey has some open questions). Example: ��% of
the votes are going to party A, ��% of the votes to party B, ��% to
party C, ��% of the voters are unsure about it.

Text analysis often concerns an extrinsic property, somewhat elicited by
the text, but not really part of the text without it being embedded in a
larger human context. For example, a piece of text approximately conveys
the sentiment of whoever wrote it, and, upon reading it, we might be
able to approximately retrieve what that sentiment was. A collection
of reviews of a product may contain information that helps predict the
demand for that product in the next trimester. These predictions convey
information about a specific dataset (a population) and are subject to
various degrees of approximation (from data collection, to task definition,
to modelling assumptions).

� Discriminative Models of Text Classification and Regression ��

Figure �.�: The figure shows three pdfs
over the positive real line. The first two are
unimodal (dashed and dotted), they each
have a single hilltop, whereas the third
(solid) is bimodal (it is in fact obtained
by combination of the other two). The
outcome with highest density in the com-
bined pdf is somewhere close to H = 0.3,
it coincides with the hilltop of the first pdf.
That hilltop however does not accumulate
as much probability mass as the second
(lower) hilltop around H = 7.8. In some
cases, it can be argued that a prediction
close to the ‘centre of the lower hilltop’
is “safest” to make. Decision theory can
formalise this notion as we shall see.

�.� Data and task definition

Our approach is data-driven, that is, we observe a collection D of
documents annotated along one or more numerical dimensions of interest,
and learn a model that reproduces (aspects of) it.

An observation is a pair (G , H), where G 2 X is a document, a sequence
G = hF1 , . . . ,F;i of ; = |G | words, each from a finite vocabulary W =
{1, . . . ,+} of known words, and H 2 Y is a response (or target) variable.
In text classification, Y is a countably finite set of disjoint categories
(e.g., negative/neutral/positve, spam/not-spam). In text regression,
Y can be a countably infinite set of ordinal numbers (e.g., N, Z) or a
subset of it (e.g., [�3, . . . , 3] ⇢ Z), it can be an uncountable set such as
the real line R or the real coordinate space R , or a subset of it (e.g.,
(0, 1) ⇢ R, R>0 ⇢ R, or � �1 ⇢ R).

As from now own we will be manipulating both discrete and continuous
random variables, we will often state results in terms of probability mass
or density functions rather than probability distributions.�

�: A probability mass function 5 (H;))
prescribes the probability with which the
random variable . takes on a specific
value H 2 Y via the relation %.(. =
H) = 5 (H;)). A pmf allows us to spec-
ify a probability distribution by relating
an outcome H, a set of parameters) and a
probability mass 5 (H;)) through a math-
ematical law. For example, the Bernoulli
pmf is defined for H 2 {0, 1}, it has a
single parameter 0) 1, and it is
defined as 5 (H;)) =)H(1 �))1�H . A
probability density function 5 (H;)) pre-
scribes the probability with which the
random variable . takes on any value
in an interval (0 , 1) ✓ Y via the rela-
tion %.(H 2 (0 , 1)) =

Ø
1

0
5 (H;))dH. A

pdf allows us to specify a probability
distribution by relating an outcome H,
a set of parameters) and a probability
density 5 (H;)) through a mathematical
law. For example, the Exponential pdf
is defined for H 2 R>0, it has a single
parameter) > 0, and it is defined as
5 (H;)) =)4�)H .

Statistical task

In statistical terms, we want a mechanism that can be used to map any
document G 2 X to the probability that the response variable will take
on a certain value (for discrete responses, where Y is countable) or fall
within a certain range of values (for continuous responses, where Y is
uncountable). For example, if we read tweets about an event, we may
want to predict the probability that �,���,���� people will attend it. If we
read comments about a politician running for office, we may be interested
in predicting whether she will receive about more than 50% of a town’s
votes in the next election. A bit more formally, we want to map G 2 X to a
conditional probability distribution %

. |-=G over Y. We do so by mapping
G to the parameter(s) of the pmf (for discrete responses) or of the pdf (for
continuous responses) of a certain parametric family of distributions.

NLP task

In NLP applications, the practitioner generally wants to map text G
to a single value of the responsible variable (e.g., to decide whether
something is or isn’t a spam, to decide whether to stock ���,��� iPads,
whether someone is leading a poll). The NLP task therefore ignores any
uncertainty inherent to the mapping from G to H. In order to do so, the
practitioner needs to choose a decision rule, that is, an algorithm to
map from the distribution %

. |-=G—the output of the statistical task—to a
single decision. In text categorisation, the most probable class is a common
rule. This rule predicts the mode of the conditional distribution. When
dealing with continuous responses, it may happen that the outcome
with highest density is not qualitatively interesting (see Figure �.�). To
deal with the decision problem the practitioner might introduce a utility
function D(H , >) which quantifies the benefit in choosing outcome > when

� Discriminative Models of Text Classification and Regression ��

the true response is H. When Yhas elements, the most prob-
able class rule is a special case of this
general decision rule, where we choose
the ‘exact match’ utility D(H , >) = [H =
>]. Proof using 5 (H) as the pmf/pdf
associated with %

. |-=G : E[D(. , >)|- =
G] =

P

H=1 5 (H)[H = >] = 5 (>), and
thus arg max>2Y E[D(. , >)|- = G] =
arg max>2Y 5 (>).

Then, given - = G, we choose the outcome > that
maximises expected utility:

H
8 = arg max

>2Y
E[D(. , >)|- = G] , (�.�)

where we use the probability distribution %
. |-=G to quantify our uncer-

tainty about the true response. Some decision makers prefer to think
in terms of a function ✓ (H , >) that quantifies the loss incurred when we
choose > rather than the true response H. In that case, the decision rule is
to minimise expected loss: arg min>2Y E[✓ (. , >)|- = G]. In most cases,
the two views are equivalent.

�.� Familiar modelling ideas

Why not tabular CPDs?

Having already learnt about tabular conditional probability distributions
(cpds) one might ask ‘why not use tabular cpds here?’.

There are a few reasons. First and foremost, our cpds now might not
look like tables. As the response variable may come from an infinite set,
we would need infinitely many values to completely specify the cpd
%
. |-=G , for any given G. Luckily, pmfs and pdfs solve that problem for

us. Rather than storing the probabilities themselves, we need only store
a parameter vector that can be used to compute probability values on
demand using a mathematical law. For example, rather than storing the
infinitely many probability values of a Poisson distribution, we need only
store the Poisson rate (a single number). Another example, rather than
storing the infinitely many probability values of a Normal distribution,
we need only store the Normal location (a single real number) and scale
(a single strictly positive real number). A table is a good device to store a
Categorical distribution because the Categorical parameter is a vector of
finite dimensionality, but, in general, what we really store is the parameter
of a pmf (or of a pdf).

So, for any given G 2 Xwe simply store the parameter)(G) that specifies
the pmf (or pdf) that prescribes the cpd %

. |-=G . Great, right? Not really,
just like before, there are infinitely many documents we may be interested
in. Hence, storing one parameter vector for each and every G is an
impossible task, computationally speaking. Statistically speaking, we
have another problem—the same we encountered before. We estimate
the numerical values of each)(G) from data, with finitely many data
points that we can observe it is really hard to learn meaningful estimates
for infinitely many cpds.

Why not naive Bayes?

Having alreayd learnt about naive Bayes models, one might ask ‘how
about we relate - and . through a joint distribution %.- , make a
conditional independence assumption, and infer %

. |-=G from simpler
factors %

, |.=H?’.

� Discriminative Models of Text Classification and Regression ��

Excellent question, but, as always, it is all about the details. The NB model
depends crucially on the set of possible target values being finite. If we
have infinitely many possibilities for H, then we would have infinitely
many cpds of the kind %

, |.=H .

Here is the punchline. For a general text analysis model, not only the
documents come from an infinite set X, but also the responses come
from an infinite set Y.

�.� Feature Functions

Our key modelling idea is to realise the mapping from documents to
%
. |-=G in a mathematical way, by relating G and some parameters that

we can adjust in order to fit %
. |-=G to data. To do that, we will need to

introduce a tool that allows us to treat a document as if it were a point in
the real coordinate space R⇡ . This tool is what we call a feature function.

A vector-valued feature function

h : X! R⇡ (�.�)

maps a document G 2 X to a ⇡-dimensional feature vector. The feature
vector is something that “describes” a document along ⇡ numerical
dimensions, each of which quantifies an aspect of the problem that’s
believed to play some significant role in the kind of analysis we are
making.

Take the example of spam detection, where our goal is to map an email G
to the probability with which it is or isn’t a spam. Useful features might
capture whether

I the email subject line is all capital letters;
I the email contains phrases such as “urgent reply”, “reply imedi-

ately”;
I the email contains phrases such as “will be removed”, “will be

deleted”;
I the email contains links to certain block-listed sites;
I the relative frequency of the word “click”.

Our feature function could then be

⌘1(G) = IsTitleAllCaps(G)
⌘2(G) = [’urgent reply’ 2 G or ’reply immediately’ 2 G]
⌘3(G) = [’will be removed’ 2 G or ’will be deleted’ 2 G]

⌘4(G) =
1
;

;X
8=1

[click = F8]

This feature function in particular is the �-dimensional vector h(G) =
(⌘1(G), ⌘2(G), ⌘3(G), ⌘4(G))> whose coordinates are defined as above.

� Discriminative Models of Text Classification and Regression ��

Figure �.�: This feature function maps
sentences to a feature space whose coor-
dinates capture the number of times a
certain word occurred. In this toy exam-
ple, our feature function only knows 5
words (shown in the vertical axis). There-
fore, our feature vectors are 5-dimensional
(i. e., h(G) 2 R5, no matter the G).

�.� Generalised Linear Models

Our new general tool for text analysis (both classification and regression)
is a generalised linear model (GLM). A GLM is a conditional model of
. |- = G where we compute the parameter)(G) of our conditional
statistical model with the help of a parametric linear transformation of
h(G). The linear transformation has its own parameters (the coefficients
we multiply and the biases we add), which we denote generically by).

The key idea is that rather than storing the statistical parameter)(G), for
every G, we will predict it whenever needed using a function

)(G) = 6(G;)) . (�.�)

Then, by plugging the predicted parameter value in our choice of pmf/pdf
5 (H;)(G)), we will be able to assign probability mass/density for any
value H 2 Yof the response variable.

Next, we introduce GLMs by discussing example models.

Bernoulli GLM

In spam classification we want to map a document G 2 Xto the probability
of it being spam or not, let’s denote this probability by 6(G;)) and recall
that 0 6(G;) 1. The statistical model of interest is

. |- = G ⇠ Bernoulli(6(G;))) (�.�)

where 6(G;)) is the probability of labelling a document as spam.

Let’s define this function. As documents are not objects in a numerical
space, our GLMs start by mapping G to a feature vector via a feature
function h(G). Once that is done, a bit of linear algebra can help us map
the feature vector to a single number, and then to a probability value.

A possible GLM for this binary classification problem is the following:

The dot product between a 2 R⇡ and b 2
R⇡ denoted a>b is defined as P⇡

3=1 0313 .
Note that a>b 2 R.

6(G;)) = sigmoid(w>h(G) + 1) (�.�)

where w 2 R⇡ and 1 2 R are the parameters of the model) = {w, 1}.
Step by step:

The sigmoid is a function sigmoid : R !
(0, 1) defined as sigmoid(0) = 1

1+4�0 .

�. we map G 2 X to a feature vector h(G) 2 R⇡ ; this is a deterministic
step and it does not require interacting with the parameters) of
the GLM—see Figure ??;

�. we take the dot-product between the feature vector and the param-
eter w, which gives us a scalar (a real value);

�. we add a bias value 1 to that scalar, obtaining a scalar (a real value).

The linear function w>h(G) + 1 maps the document to a real value that
has the right dimensionality (i.e., the dimensionality of the Bernoulli
parameter is �). The result of this operation is called the linear predictor.
While this value has the right dimensionality, it is not correctly constrained
to be a valid parameter. That is, the linear predictor can be negative,
positive, or any number really (of whatever magnitude). A valid Bernoulli
parameter is a number constrained between � and �, so, to obtain such

� Discriminative Models of Text Classification and Regression ��

Figure �.�: Here we show the linear predictor (left) and the Bernoulli parameter (centre) that the GLM predicts for two pieces of text, each
represented using the feature function from Figure �.� and the parameters w = (1, 1/2, 0,�1, 0)>, each associated with one dimension of the
feature space, and 1 = �1/2, which shifts the result of the dot product. Using the GLM output (centre) we can prescribe the distribution of .
given - = G

(1) or given - = G
(2) via the Bernoulli pmf (right).

Figure �.�: A document G is first mapped
to a vector-valued feature representation
h(G) 2 R⇡ using a predefine feature func-
tion (in this illustration ⇡ = 2). A linear
transformation then maps the feature vec-
tor to real values (in this illustration
 = 3), these are known as linear predic-
tors. The linear predictors have the right di-
mensionality to parameterise our Categor-
ical pmf, but they are not valid parameter
values (the Categorical pmf requires posi-
tive values that sum to �). Last, but not least,
we let the softmax function map the
linear predictors to a -dimensional prob-
ability vector (i. e., a point in the simplex
� �1 ⇢ R). This is one way to map from
text to a Categorical pmf through a para-
metric function: W 2 R ⇥⇡ and b 2 R

are the free parameters of this model (i. e.,
no matter what values we choose for those,
the mapping will remain valid; later we
discuss a good way to choose them).

a valid parameter this GLM uses the sigmoid function, whose output
is always constrained to being a valid probability value (between � and
�), no matter the input. Figure �.� illustrates GLM parameterisation of
conditional distributions for two pieces of text.

The GLM has linear in its name because the predictors h(G) and the
parameters) interact linearly, it has generalised in its name because the
final mapping from the linear predictor to the statistical parameter of the
distribution need not be linear. In statistics this last step of the mapping
(which was realised by the sigmoid function in this example) is called the
inverse link function. A name that is more popular in machine learning,
and, in particular, in deep learning is activation function. In deep learning,
the input to the activation function (that is, the linear predictor) is often
called score or logit in the context of a binary classification model.

Categorical GLM

This idea is so powerful that we can build pretty much every text classifier
and every text regressor in the book. For example, for a -way classifier

. |- = G ⇠ Cat(g(G;))) (�.�)

here g(G;)) must be a -dimensional vector of positive values that sum
to �. This is a valid GLM for this model:

s = W>h(G) + b (�.�a)
g(G;)) = softmax(s) (�.�b)

where = {W, b} are the parameters of the model, W 2 R⇡⇥ is a matrix
that maps ⇡ inputs (the feature values) to outputs (real values),
b 2 R is a vector of biases (one real value bias per class), and softmax is
a -dimensional vector-valued function whose 9th coordinate is

[softmax(s)]9 =
exp

�
B9

�
P

:=1 exp(B:)
. (�.�)

� Discriminative Models of Text Classification and Regression ��

Figure �.�: Here we show the linear predictors (left) and the Categorical parameters (centre) that the GLM predicts for two pieces
of text, each represented using the feature function from Figure �.�. In this example, the GLM parameters are W = (w1 ,w2 ,w3)> with
w1 = (0, 0,�1/2, 1, 0)>, w2 = (0, 1/10, 1/10, 0, 1/2)>, w3 = (1, 1/2, 0, 0, 0)> and b = (0, 0, 0)>. Using the GLM output (centre) we can prescribe
the distribution of . given - = G

(1) or given - = G
(2) via the Categorical pmf (right).

In deep learning literature the vector s that we use as input to the softmax
function is often called the vector of scores or logits, each one of its
coordinates quantifies the importance of the corresponding class in a
logarithmic scale. This model is also known as a log-linear model, that is
because the logarithm of the softmax is a linear function of h(G) and).

Poisson GLM

Let’s attempt to parameterise a conditional distribution over the number
of likes . that a tweet G will receive, based on its content as captured by
a feature function h(G) 2 R⇡ . Suppose that for this statistical model, we
decide to use a Poisson distribution, then The parameter of the Poisson distribu-

tion Poisson(⌫) is called rate, and it holds
that ⌫ 2 R>0. The Poisson rate is also
its mean and variance: E[Poisson(⌫)] =
Var(Poisson(⌫)) = ⌫. The Poisson pmf is
given by Poisson(H |⌫) = ⌫H 4�⌫

H! .

. |- = G ⇠ Poisson(6(G;))) (�.�)

because this is a Poisson, we know that 6(G;)) must be strictly positive.
So, here’s a valid GLM:

6(G;)) = softplus(w>h(G) + 1) (�.��)

with model parameters are) = {w, 1} with w 2 R⇡ and 1 2 R.

For B 2 R, the softplus output
softplus(B) = log(1 + exp(B)) is strictly
positive (that is, larger than zero).

Normal/Gaussian GLM

Let’s attempt to parameterise a conditional distribution over the market
value . of a product based on product description and reviews G. Again,
we count on a feature function h(G) 2 R⇡ that captures aspects of the
description and reviews that are essential for the task. The parameters of the Normal distribu-

tion N(⇠, �2) are called location and scale.
For the location, it holds that ⇠ 2 R. For
the scale, it holds that � 2 R>0. The
Normal location is also its mean, that
is, E[N(⇠, �2)] = ⇠. The Normal scale is
also its standard deviation (the squared
root of its variance): Var(N(⇠, �2)) = �2.
The Normal pdf is given by N(H |⇠, �2) =

1
�
p

2�
exp

⇣ �(G�⇠)2
2�

⌘
.

Suppose that for
this statistical model, we decide to use a Normal/Gaussian distribution
with fixed variance, then

. |- = G ⇠ N(6(G;)), 12) (�.��)

� Discriminative Models of Text Classification and Regression ��

Figure �.�: Here we show the linear predictor (left) and the Poisson rate (centre) that the GLM predicts for two pieces of text, each
represented using the feature function from Figure �.�. In this example, the GLM parameters are w = (2,�1, 0,�2,�1)> and 1 = 3/2. Using
the GLM output (centre) we can prescribe the distribution of . given - = G

(1) or given - = G
(2) via the Poisson pmf (right).

because this is a Normal, we now that 6(G;)) must be real valued. So,
here’s a valid GLM:

6(G;)) = w>h(G) + 1 (�.��)

with model parameters are) = {w, 1} with w 2 R⇡ and 1 2 R. We
might even attempt to predict the scale, rather than have it fixed, for
example:

. |- = G ⇠ N(⇠, �2) (�.��a)
(⇠, �)> = g(G;)) (�.��b)

61(G;)) = w>h(G) + 1 (�.��c)
62(G;)) = exp

�
m>h(G) + 2� . (�.��d)

Where we constrain the second output to being strictly positive with
the exponential activation, because the Normal/Gaussian scale must
be a strictly positive number. This time our GLM has more parameters
) = {w,m, 1 , 2} with w,m 2 R⇡ and 1 , 2 2 R.

Figure �.�: Here we show the linear predictors (left) and the Normal parameters (location and scale) that the GLM predicts for two
pieces of text, each represented using the feature function from Figure �.�. In this example, the GLM parameters are W = (w1 ,w2)> with
w1 = (2,�5, 0,�2, 1)>, w2 = (�1,�1, 0,�1, 1)> and b = (3/2, 0)>. Using the GLM output (centre) we can prescribe the distribution of .
given - = G

(1) or given - = G
(2) via the Normal pdf (right).

� Discriminative Models of Text Classification and Regression ��

�.� General principles for prescribing GLMs
�. Start with choosing the family you will model with. This depends

on the type of data you have (e.g., binary means Bernoulli, -
way classification usually means Categorical, ordinal regression
usually means Poisson, but it could be some other distribution over
natural numbers or a subset thereof, like the Binomial, continuous
regression might require a Normal distribution, regressing to
vectors of proportions might require a Dirichlet distribution, etc.).
You don’t need to know all these distributions by heart, when
needed, we will give you information about them that will help
you judge their relevance in context.

�. The input is text, but GLMs operate with inputs in the real coordi-
nate space, so you need a vector-valued feature function h(G). For
now, you have to design that yourself, mostly by hand with the aid
of some handcrafted rules (later we will give you machine learning
devices to learn feature functions from data).

�. In a GLM, the input h(G) and the parameters) interact linearly.
This constrains us to either operations like dot product, matrix
multiplication and scalar or vector addition. Whether we have
“dot product plus scalar” or “matrix multiplication plus vector”
depends exclusively on the dimensionality we need for the linear
predictor. If we need a single scalar, we will use the former. If we
need a vector, we will use the latter.

�. Example �: the Poisson parameter is a single scalar, thus we know
that we need to map from h(G) to a single scalar, as we achieve with
"dot product plus scalar". Example �: the Categorical parameter
is a vector, thus we know that we need to map from h(G) to a
 -dimensional vector, as we achieve with “matrix multiplication
plus vector”.

�. Finally, the statistical parameter is generally constrained to a sub-
set of the real numbers, so we need an activation function that
constrains the linear predictor accordingly. Example �: the Poisson
parameter is strictly positive by definition, so we need to wrap the
linear function around something whose output is never negative
and never �, no matter which real-valued input we give it. The
exponential function does that for us. There are other activation
functions that achieve the same result, but the exponential is con-
venient for certain reasons (e.g., it’s logarithm is linear). In our
implementation below we will see other options. Example �: the
Categorical parameter must be a probability vector, the softmax
function can realise that constraint for us.

�.� Parameter Estimation

Given a training set D = {(G(=) , H(=))}#
==1 of # observed input-target

pairs, we would ideally assess the log-likelihood of the model:

LD()) =
#X
==1

log 5(H(=);)=) with)= = 6(G(=);)) , (�.��)

� Discriminative Models of Text Classification and Regression ��

which depends on the parameter) through our choice of pmf/pdf
5 (H;)), and then choose the parameter) that maximises it:

)8 = arg max
)

LD()) . (�.��)

Unlike tabular categorical cpds, there is no simple expression for the
MLE of a GLM. But, we can employ a gradient-based search. This search
uses the gradient r)LD()) to iteratively update an existing), starting
from an initial guess)(0), which is typically a random initialisation of
the parameters.

At iteration C, the update rule is

The gradient of a function 1(v) with
respect to v 2 R⇡ , denoted rv1(v),
is the vector of partial derivatives
(%
%E1

1(v), . . . , %
%E
⇡

1(v))>. In machine
learning, where) is a collection {w, 1} of
parameters, when we write r)L()), we
mean both rwL(w, 1) and %

%1L(w, 1).

)(C+1) =)(C) + ✏Cr)(C)LD()(C)) (�.��)

where the log-likelihood is assessed using the current parameters, we
then obtain the gradient for it, and combine it with the current parameters
to get the next iterate.

If you have seen the update formula be-
fore with a minus rather than a plus for
the gradient, don’t worry, it is the same
notion. You sum the gradient if you are
maximising the log-likelihood, and you
subtract the gradient if you are minimis-
ing the negative log-likelihood. The two
procedures yield the exact same optimum.The quantity ✏C > 0 is called a learning rate.

In certain instances the learning rate ✏C
is the same fixed value no matter the C.
But, for certain algorithms (e. g., stochas-
tic gradient ascent/descent) it must decay
over time (for the algorithm’s mathemati-
cal correctness). Examples of schedule in-
clude ✏C =

✏0
1+C and ✏C =

✏0
log10(10+C) , where

✏0 > 0 is a fixed initial value.

Stochastic gradient-based optimisation

Assessing the log-likelihood of a certain value of the parameter vector
) requires assessing the probability mass (or density, for continuous
variables) of each one of our observations under the current value of the
parameter. Each one such assessment on its own is not at all challenging,
but assessing all the # terms can be challenging for large # .

Fortunately, we can use a stochastic gradient procedure, which still has
the same guarantees as the deterministic procedure. At each iteration C,
we compute an approximation to r)(C)LD()(C)). This approximation is a
Monte Carlo (MC) estimate obtained using (< # data points uniformly
sampled from D:

r)(C)LD()(C)) MC⇡ 1
(

(X
==1

r)(C) log 5(H(B);)B) with)B = 6(G(B);)(C))

(�.��)

We can obtain this gradient by essentially pretending, at each iteration
C, that the log-likelihood function depends only on a small batch of (
observations {(G(B) , H(B))}(

B=1 ⇢ Ddrawn from the training set:

LB()(C)) = 1
(

(X
B=1

log 5(H(B);)B) with)B = 6(G(B);)(C)) . (�.��)

Computing the gradient of the log-likelihood (its exact value or MC
estimate) is a tedious task, but, luckily, it can be exactly and efficiently
automated for all continuously differentiable functions. Automatic differ-
entiation is a powerful tool in machine learning and statistics, one of its
efficient algorithmic implementations is the well known gradient back-
propagation algorithm. In this course, we will rely on software packages
that implement it for us. Our only practical concern is to guarantee
that the operations that map from h(G) and) to a probability mass (or
density) value 5(H; 6(G;))) are all continuously differentiable functions

� Discriminative Models of Text Classification and Regression ��

of). Luckily that is a very mild requirement, which the linear function
(which gives us linear predictors) satisfies, and the same is true for the
vast majority of activation functions (e.g., exp, sigmoid, softmax, softplus,
etc.).

Regularisation

Oftentimes, we have many features, and thus many parameters. This gives
models the capacity to discover correlations that have no real predictive
power (e.g., that the token ‘capivaras’ implies a negative sentiment, simply
because the one time that word was seen in the data was in a document
labelled with the negative class, for example the document might have
been “I loved the capivaras but overall the horrible weather ruined the
trip”). These are called spurious correlations and we would rather not be
misled by them.

The L� norm of a vector v 2 R⇡ is R(v) =qP
⇡

3=1 E
2
3
. For a collection) of parameter

vectors, we sum the L� norms of each
vector in the collection.

In an attempt to get rid of them, we employ a so called regulariser. This
is a penalty on the objective based on the norm of the parameter vector,
and we usually employ the L� norm.

Thus, the final objective for regularised maximum likelihood estimation is

)8 = arg max
)

LD()) � ⌫R()) (�.��a)

or, equivalently,

)8 = arg min
)

�LD()) + ⌫R()) , (�.��b)

where ⌫ � 0 is a hyperparameter used to control the importance of the
regulariser. Unfortunately, there is no simple way to choose the value of
⌫ directly from the training data, we have to try a handful of values and
test the model’s performance on heldout data.

