Generative Models of Text
Classification

To complete this class you need to know the following:

1. From statistics:

» the Categorical probability distribution, namely, its parame-
terisation and its probability mass function;

» how to estimate the parameters of a Categorical distribution
from data using maximum likelihood estimation.

2. From probability theory:

» random variables, conditional probability, marginal probabil-
ity, chain rule, conditional independence, Bayes rule.

Oftentimes we want to analyse text in terms of certain implicit properties
of it. For example, we read a product review and try to analyse in terms
of the sentiment the authors expressed towards the product. For that,
we may have a categorisation of sentiments as shown in Table 3.1, and,
for simplicity, we assume that the these ways of describing sentiment
indeed capture different (disjoint) sentiments.

Another example, in costumer service, we read an email request and try
to route it to the department that is best qualified to act upon the request
(e.g., shipment, payments, returns). There are plenty of other examples
including spam detection, document categorisation, etc.. For now, we
will consider the case where the attribute is one of a finite set of possible
categories.

3.1 Data and task definition

Our approach is data-driven, that is, we will observe a collection & of
labelled documents, and learn a model that reproduces (aspects of) it.

An observation is a pair (x, y), where x € X is a document, a sequence
x = {w1,...,w;) of | = |x| words, each from a finite vocabulary W =
{1,...,V} of known words,! and y is a category in a countably finite
setY ={1,...,K} of possible categories.? The set X = " is the set of
all possible sequences of known words, no matter their length (i.e., the
length 7 is anything from 0 to any natural number).

Statistical task

In statistical terms, we want a mechanism that can be used to map
any document x € X to the probability that a certain attribute value y
describes it, and we want to be able to do so for all possible values of the
attribute. For example, if we read the short review you get what you
pay for we may want to express the probability with which it conveys
one of the 5 sentiment levels of Table 3.1.

From Random Experiments to Natural Lan-
guage Processing — by Wilker Aziz. This
book has not been published yet.

3.1 Data and task definition. . .. 3
Statistical task 3
NLPtask 4

3.2 TabularCPDs 5

3.3 Naive Bayes classifier 5
Parameter estimation. 7
Terminology 8
Text analysis 8
Smoothing tabular cpds . . . 10

Table 3.1: One-to-one mapping

sentiment

clearly negative
somewhat negative
neutral

somewhat positive
clearly positive

Qs N | =

1: Assume a one-to-one correspondence
between words and integers.

2: Assume a one-to-one correspondence
between categories and integers.

W is not the set of all documents in a
given dataset, it is a much larger set that
includes any document we may ever see—
as long as the words in it come from the
vocabulary 7 —and sequences that do
not even look like plausible grammatical
documents. Unlike the set of words and
the set of categories, the set of all possible
sequences is countably infinite (i.e., it is
a set of discrete elements, but there are
infinitely elements in it). We do not rep-
resent this set explicitly, we just know it
exists, conceptually.

3 Generative Models of Text Classification 4

Abit more formally, we want to map text x € X toa conditional probability
distribution Py|x-, over a finite set Y of categories (such as those in
Table 3.1). Table 3.2 illustrates two examples of conditional probability
distributions (cpds) in a sentiment classification context where x is a short
product review and vy is one of 5 sentiment levels. These distributions
assign probability to certain outcomes (e.g., sentiment) given others
(e.g., review text), they represent and quantify our uncertainty about the

mapping from one domain to another (e.g., from text to one’s sentiment).

Statistics will help us estimate those objects, probability theory will

X=x Y=1 Y=2 Y=3 Y=4 Y=5
amazing characters, sur- 0. 0. 0.1 0.2 0.7
prising ending

no depth, kinda obvious 0.5 0.3 0.2 0. 0.

help us design them in a compact way, and being able to do so for any
document we may ever encounter is a task for an NLP researcher.

NLP task

In NLP applications, the practitioner generally wants to map text x
to a single category (e.g., to decide whether or not a book should be
recommended to a user, or to which department an email should be
routed, or whether an email should be moved to the spam box). When
we label a document with a single class we are choosing to ignore any
uncertainty inherent to the mapping from document to classes. Consider
a review online (e.g., on a platform such as Bol or Amazon), a person
writes a review and assigns a star rating (e.g., 2 stars), but if we ask
ten other people to guess the score from that piece of text, we would
probably obtain a number of different guesses. Perhaps the same person
would assign a different score to their own review text a day later. These
thought experiments show that uncertainty in mapping from document
to sentiments is a very plausible thing, yet, in many applications we are
‘forced’ to make a decision in favour of a single class.

To address both the statistical and the NLP task, we are going to make
a convenient separation. We will rely on statistics to approximate the
mapping from x to a probability distribution Py|x-,, and we will rely
on some other strategy to map from Py|x-, to a single class in Y. This
strategy is what we call a decision rule, and there are a few available. By
and large, the most common decision rule in text classification is the most
probable class rule, which predicts the class assigned highest probability
under the model (the so-called mode of the distribution):

y* =arg I’I?anx Py x(k|x) . (3.1

Py|x=y is the probability distribution of
the random variable Y conditioned on a
given assignment X = x of the random
variable X. Py|x(Y = y|X = x) denotes
the probability value of an assignment
Y = y given an assignment X = x, we
will often use Py x(y|x) for brevity. Py|x,
without arguments, refers to the collection
of all conditional distributions of the form
Py|x=x, that is, for all values of X.

Table 3.2: Each row of the table concerns
a given review, each column of the table
concerns a sentiment level. Each cell is the
probability Py|x(y|x) of a sentiment level
y given the review text x—their numerical
values are made up for this example. Note
that every cell is a valid probability value
(a number between 0 and 1) and the cells
in a row add to 1.0.

Statistical task: map any piece of text x to a
conditional probability distribution Py|x -
over labels Y. NLP task: map any piece
of text x to a single label, typically the
one predicted to have highest probability
under Py|x—y-

The operator arg maxeg f(e) returns the
element in the set € for which the func-
tion f(e) attains highest value. In gen-
eral, this value is not unique, but we will
mostly act as if it were. Example: if f(x) =
0.7*x0.3!7%, then arg maxye(1} f(x) =1
because f(1) > f(0).

3 Generative Models of Text Classification 5

3.2 Tabular CPDs

Statistically, we are interested in realising the mapping x + Py|x—,. If X
were finite, we could hope to associate a Categorical distribution with
each and every one of the possible assignments of X, and independently
specify each and every such distribution.

That is, we could model Y|X = x ~ Cat(0")) using a Categorical
distribution with a parameter 0™ € Ag_q that is specific to the text x.
We could then use maximum likelihood estimation (MLE) to determine 9(()'3)

for every conditioning context ¢ € X and every outcome 0 € Y using a
dataset of N observations @ = {(x, y(”))}nNzl. The MLE solution is:

o6 _ _ Zamlx™ =Xy = o]

¢ , (3.2)
Skey N [xM =] x [y = k]

which only requires counting the number of times (X = ¢,Y = 0) co-
occur in the data and divide that by the marginal counts for X = c (i.e.,
the number of times X = c occurred, or, equivalently, the number of
times it co-occurred with anyone of the possible outcomes of Y). This
way to represent a conditional probability distribution (cpd) is called a
tabular representation of the cpd. It is called that way because we can store
all probability values Pyx(y|x) = Q;X) in a table, where each row is the
probability vector 0*) that prescribes the cpd Py|x—. See Table 3.3. The
difficulty in using such an approach is that in text classification x is a
whole sentence, paragraph, or document, drawn from an unbounded
(or, more formally, countably infinite) space of outcomes. To be able to
map any x to a distribution Py x—,, we would have to store and estimate
as many parameters as there are pairs (x, y) in the space X X ¥. First,

xed o o) oY 6V

amazing characters, sur- 0. 0. 0.1 0.2 0.7
prising ending
no depth, kinda obvious 05 03 02 0. 0.

we cannot store infinitely many parameters. Second, we cannot really
estimate infinitely many parameters from data, as in practice we will
only observe a finite number of labelled documents.

Our first attempt at text classification will be constrained to such tabular
representations of cpds, but, for viable solutions, we will have to make a
more efficient use of this technique.

3.3 Naive Bayes classifier

Instead of storing the K probability values that prescribe the cpd Py|x—y
in a table, the naive Bayes classifier (NBC) infers them for any given x € X
using a compact joint distribution over X and Y and Bayes rule. To see
how this happens, let’s use some probability calculus to rewrite the

probability Py|x(y|x) in terms of other (possibly interesting) quantities.

The notation C ~ Cat(64, ..., 0x) is pro-
nounced ‘C is a random variable with
a Categorical distribution’. A Categori-
cal distribution over K categories is pre-
scribed by K probability values 01, . . ., Ok,
one for each class. To be valid, they must
be positive (i.e., Oy > 0) and add to 1 (i.e.,
ZIk(:l Ok = 1). The Categorical probability
mass function (pmf) assigns probability
Cat(k|61,...,0k) = O to C = k.

We use O = (01,...,0k)T to denote a
fixed-dimensional (column) vector. When
we need to ‘name’ this vector or associate
it with a specific context, we use a super-
script: e.g., @Pretty 800d)y s the vector as-
sociated with the document ‘pretty good’.

The probability simplex, denoted Ag_1, is a
subset of R If 6 € Ag_1, then 0 < 6 <
1forany k € {1,...,K},and Zlk<:1 O =1.
Think of it as the space of K-dimensional
‘probability vectors’.

The Iverson bracket [«] converts a Boolean
expression to a real number: it is 1 when
the predicate a is true, and 0 otherwise.
For example, if x = (it, is, pretty, good),
[x3 = pretty] =1 and [x2 = are] = 0.

Table 3.3: Two examples of tabular cpds
for sentiment classification. Conceptually,
to complete this table, we need infinitely
many rows, one for each possible docu-
ment x € X.

In a tabular representation of a collec-
tions of cpds Py, the probability value
Py|x(y|x) of known pairs (x, y) are stored
in a table. Pairs that were never seen before
are considered outside the support of the
distribution, and thus get 0 probability.

3 Generative Models of Text Classification 6

We begin with the definition of conditional probability

Pyx(y, x)

Pe(x) (3.3a)

Pyix(ylx) =

and apply chain rule to factorise the joint probability in the numerator

_ Py(y)Pxy(xly)
= (3.3b)

When doing so, we conveniently start with the class probability Py(y),
which allows us to introduce the factor Px|y(x|y) in the expression. This
factor is different from Py x(y|x) in that we are generating text, rather
than conditioning on it. While there are infinitely many cpds of the kind

Py|x-x, one for each possible document of interest, there are only K cpds
of the kind Px|y=y, one for each label.

For any one label y, the cpd Px|y=y is not trivial either, since there is
no plausible way to bound the sample space of X. When generating a
high-dimensional data structure (e.g., a document), we can choose to
make some simplifying assumptions, even naive ones, as far as we are
willing to live with the consequences (i.e., they limit the analysis in some
way). Let’s assume that words in x are independent of one another given
the class y. Under such conditional independence assumption it holds that:

)
ind.
Pxpy(xly) "= | | Pwiy(wily) , (3.4a)
i=1
which we can use to rewrite the conditional further:
ind. Py(y) TTL_, Py (wily)
ind. LYY -1 Fwly y
Pyjx(ylx) "= =1 e (3.4b)

Px(x)

This can be further rewritten to express the denominator using the same
types of factors used in the numerator:

_ Py(y) TT'_, Pwiy(wily)

key Pyx(k, x) (3.4
Py(y) IT._, Pwyy(wily)

= 3.4d

Srey PrlOPxy (xIK) (34

Py(y) Hﬁzl Py (wily) (3.4e)

" Skey Pr(k) TT'_, Pwpy(wilk)

What we just did was to infer Py x(y|x), which conditions on a high-
dimensional outcome x and thus cannot be represented efficiently using
tabular cpds, from a joint distribution Pyx that factorises in terms of
simple cpds. In fact, we only have two types of cpds in the final expression:
i) one unconditional distribution over classes Py; and ii) a set of class-
conditioned distributions over words, each of the kind Pyy=,. Both
Y and W are finite and small enough that we could represent the
collection of all cpds using tables. A tabular Categorical distribution
Y ~ Cat(¢p) with ¢ € Ag_1, and K tabular Categorical distributions

This conditional independence assump-
tion is not realistic. Put yourself on the
shoes of a reviewer, you decide you will
write a negative review, then you write
it, the words you produce are not inde-
pendent of one another, they likely form a
coherent argument. But this assumption
is needed at this point, we motivate it from
no more than convenience.

We sometimes write something on top of

the ‘equals to” operator (e.g., irgjl'). This

is meant to indicate that the equality
holds because of a certain assumption
(as opposed to it holding in general).
For example, the statement Pap(a,b) =
Py(a)Ppa(bla) = Pp(b)Pap(alb) holds
in general (it is the chain rule of probabil-
ities), whereas Pap(a, b) ind. PA(a)Pp(b)
only holds when the two random variables
are independent of one another.

3 Generative Models of Text Classification 7

WY = y ~ Cat(n'¥)) with n¥) € Ay_;, one for each y € Y. Table 3.4
and Table 3.5 illustrate what we achieved. Compare them to Table 3.3.

Parameter estimation

The parameters of the various cpds in this model—shown in Tables 3.4
and 3.5—can be estimated via MLE:

_ ZnNzl[y(n) = k]
= =, (3.50)

szzl Z:':l[]/(n) = k] X [wl(n) = z}]

(k)
7'(0 =
Soex IV, 2 [y = k] x [w!” = o]

) (3.5b)

where we use [, as the length of the nth document (i.e., I, = |x™]).

Take a moment to understand these expressions. For the prior parameter
¢k, which prescribes the probability Py(k) of a class assignment Y = k,
we need the sample frequency of Y = k in the dataset: we iterate over
each of the N data points, count how many times y is exactly k, and
divide by the total number of data points N. We need to do that for

every possible value of k. For the class-conditioned parameter ng,k), which
prescribes the probability Pyy(v|k) of a word assignment W = v given
a class assignment Y = k, we need the sample frequency of the pair
(Y = k, W = v) in the subset of observed documents that contains all
instances labelled with class k: we iterate over each of the N data points

(i.e,n=1,...,N)and over the positions of each text (i.e., i =1,...,1,)
(n)
i

is exactly v, divide by the number of times y(”) is exactly k regardless

counting how many times y™ is exactly k at the same time that w

of the value of wl("). The denominator in that case is in fact equal to
221:1 I, % [y(”) = k]: the total number of words in the subset of documents
labelled as instances of class k.

The notation above can be daunting to read. So, for clarity, we will define
a notation shortcut. We define some auxiliary functions to count joint
occurrences of outcomes in the data. For example, with

N
county (k) = Z[y(”) = k] (3.6a)
n=1
N I,
countyw (k,0) = > D [y™ = k] x [w!"” = 0] (3.6b)
n=1 i=1

we can re-write Equations 3.5a and 3.5b as:

county (k)
= "7 3.7
P Yyey county (y) (372)
ng,k) _ countyw (k, v) (3.7b)

Swew countyw (k, w) -

For clarity, we subscript these functions with the random variables whose
outcomes we are counting.

Y=1 Y=2 Y=3 Y=4 Y=5

1 ¢2 b3 ¢4 ¢s

Table 3.4: Prior over 5 classes.

Y=y W=1 W=2 .. W=V
1 1 1
A
: S P
° o W T
S M M
5 s Tl . Ty,

Table 3.5: The parameters of the class-
conditioned cpds. There are 5 such cpds,
one per value of the sentiment label. Each
cpd takes V parameters, one for each of the
V known words in the language (assume
words were mapped to integers 1 to V).

3 Generative Models of Text Classification 8

Time and space. If you look carefully, the essential operation needed
for the MLE solution is to iterate over all labelled documents counting
something in memory (i.e., occurrences of a given class for the prior,
co-occurrences of classes and words for the class-conditioned cpds). If
L is the length of the longest document in the collection, the worst case
time complexity of the MLE procedure is ©(N x L), for gathering the
co-occurrence counts takes iterating over all positions (i = 1,...,L) of
all documents in the dataset (n =1, ..., N). Without any optimisation
for sparse tables, and assuming that each parameter takes one unit of
space, the entire model occupies O(K + K X V) = O(K x V) units of
space—one per parameter of the prior and one per parameter of each
class-conditioned cpd.

Terminology

For a given pair (x, y), the quantity Py (y) is known as the prior probability
of y (called that way because it is the probability a class receives before
we know the document); the quantity Py (x|y) is known as the likelihood
of y given x;* which makes the quantity Py|x(y|x) the posterior probability
of y given x. The posterior probability expresses our revised belief about
Y upon observing x.

The independence assumption we make, namely, that words in x are
conditionally independent of one another given the class y is known as
the ‘bag of words” assumption, or ‘bag of words’ representation of the
document. This term bag of words comes from thinking of a document
in the following way: transcribe x to a piece of paper, cut this piece
of paper into different parts separating the words in it, then put all
these little pieces of paper in a bag and shuffle it. The view of the
document you get retains no information about the order in which words
occurred, all information it retains is which words occurred in x and
how many times they occurred. When we think of a document as a bag
of words, rather than a sequence of tokens with arbitrary length, we
can use a V-dimensional vector of counts to represent the document,
which, depending on how long we expect our documents to be, can be
convenient for implementation using a programming language.

Text analysis

When we analyse a novel document x, = (w1, ..., w;), we may be inter-
ested in the determining the cpd Py|x—,, and/or one of its properties.

Posterior distribution. Let’s start with inferring the entire posterior
cpd, that is, inferring Py x(k|x.) for every value k € Y. Recall that by
Bayes rule we know that:

Py(k) IT'_, Pw)y(wilk)
Syey Py(y) T, Pwiy (wily)
e xTIT)

Syey ¢y X Iy g,

Py|X(k|X*) = (38)

(3.9)

3: You read it correctly. Pxy(x|y) is the
probability of a choice of x given some
fixed y, but, when we talk about that same
quantity as a function of some choice of
y for a fixed x, we call it the likelihood of
y given x. In machine learning and NLP
literature, the likelihood of y given x is often
shortened to the likelihood of y or even
just likelihood, since x is fixed. In recent
papers, you will encounter the expression
‘the likelihood of the document’, which
is a rather informal (if not incorrect) way
of referring to the likelihood of the class
given the document.

The count vector ¢ € N(‘J/ defined such
that ¢, = Zf:l [w; = v] is the number of
times word v € W occurs in document
x = (w1,...,w;) is known as the bag of
words encoding of the document. Note that
by the definition of ¢, Zgzl cp =1.

3 Generative Models of Text Classification

The elementary probability factors in this computation are parameters
stored in our tabular cpds. Note that the term in the numerator, as well as
each of the terms inside the sum in the denominator, requires multiplying
|x.| + 1 probability values together. If assessing each elementary proba-
bility value takes one unit of time, denoted O(1), then each of those terms
takes |x.| + 1 units of time, denoted 6(|x.|). We have to compute only
one such term in the numerator, but we need to compute K such terms in
the denominator (because we need to marginalise the class assignment
out), wich leads to the overall procedure costing time proportional to
O(K X |x.]).

The naive Bayes model uses joint distributions, conditional independence,
and Bayes rule to essentially trade storage for computation (i.e., we cannot
store and estimate infinitely many parameters, but we can store and
estimate K + K X V parameters). Rather than storing the distribution
Py|x-x for every x, we compute it (infer it) from the elementary ones
only when it is needed.

Posterior mode. Sometimes all we care about is the most probable
class under the model. In those cases, we do not need to normalise the
distribution. That’s true because

y* = argmax Pyx(k|x.) (3.10a)
key
the conditional probability can be rewritten

_ PYX(k/ x*)
=argmaxX ———

nax =5 (3.10b)

and its denominator is not a function of our choice of class k

= argmax Pyx(k, x.) (3.10¢)
key

and thus can be dropped, as it does not affect the argmax:
!
=arg r]?ecn; Py(k) l_[Py (w;|k) (3.10d)
€ i=1

1
= argmax Qg l_[ng,(,.) . (3.10e)
key i=1

Determining which of the available classes is the mode of the distribution
still requires evaluating all K joint probabilities, and thus it still takes
time O(K X |x.|).

Marginal probability. When we expressed the posterior cpd, we also
expressed an interesting quantity, but perhaps we did not give it much
attention. The marginal probability of the document x, is the quantity that

9

3 Generative Models of Text Classification 10

normalises the joint distribution into a posterior cpd:

Px(x.) = >, Pyx(k, x.) (3.11a)
key
x|
= > Py [| Pwpy(wilk) (3.11b)
key i=1
Jx.|
= > e x[]) (3.11c)
key i=1

The marginal probability plays an important role when learning from
incomplete datasets (e. g., datasets that miss annotation for some of the
documents), a problem commonly referred to as semi-supervised learning.
For now, we will not study semi-supervised learning, but soon we will
encounter other applications of marginal probabilities.

Smoothing tabular cpds

Oftentimes, when analysing novel documents, we will encounter words
that we have never seen before. Tabular cpds cannot accommodate
outcomes that were never seen before, they are effectively outside the
support of the model and receive 0 probability.

In an attempt to overcome this data sparsity problem, it is common
to smooth the maximum likelihood estimates of the class-conditioned
distributions Py |y stealing some probability mass from outcomes that
were observed and reserving it to future outcomes.

The simplest such technique is called Laplace smoothing or ‘add & smooth-
ing’. The idea is to change MLE as follows:

) _ a + countyw (k, w)
w

= . 3.12
Va + X yeqy countyw(k, 0) (312)

The value of a cannot be estimated from the training data alone, and,
instead, needs to be fixed manually using an assessment of performance
on heldout data (see sections 4.7 and 4.8 of [1] for evaluation and cross
validation).

When, we are analysing novel documents, the probability of some

— 1 — 1 a
unknown word W = u given Y = k is therefore set to 5 Gk

[1]: Jurafsky et al. (2023), Speech and
Language Processing

