
Figure B.�: A �-sided die (plural: dice)
is a cubic object with faces numbered as
shown (top: Asian-style; bottom: Western-
style). — By Nanami Kamimura, Deriva-
tive work: SiPlus, CC BY-SA �.�, via Wiki-
media Commons.

Figure B.�: Probability space associated
with the sum of two fair �-sided dice. — By
Tim Stellmach, Own work, Public domain,
via Wikemidia Commons.

�: Some people find the idea of infinite
repetitions of an experiment rather unin-
tuitive and/or hard to generalise to events
that do not repeat easily or at all (e. g., an ob-
servation about today, our sun exploding,
etc.). They prefer to think of probability
as one’s personal quantification of belief
given the information accessible to oneself
(e. g., the dice are fair, the experimenter
does not interfere with the results, etc.).
Probabilities as frequencies and probabilities
as personal beliefs are the two most common
interpretations of probability, but they are
not the only two. Fortunately, probability
theory does not depend on the interpreta-
tion we give to probability, so we can be
pragmatic and pick the interpretation that
better suits the application scenario.
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Suppose we are interested in studying our uncertainty about rolling
several numbers using two �-sided dice (see Figure B.�). The dice available
to us are identical in their physical properties and their faces are perfectly
symmetric such that, if we rolled them, they would each land showing
one and exactly one of their faces, independently of one another, and
with no specific preference for any one of the possibilities—dice like that
are said to be fair. For this study, we design a random experiment in which
we roll the two fair dice at the same time and do not attempt to control
the result in any way, we then record the sum of the numbers they show.
Figure B.� shows all possible results of this experiment.

Each pair of faces in the figure is what we call an outcome, together all
�� pairs form this experiment’s sample space. In this experiment, we care
about a specific property of outcomes, namely, the sum of the numbers we
rolled—the possible values of this property are shown on the horizontal
axis. A set that contains all outcomes in the sample space sharing a
specific value of the property of interest is what we call an event—events
are shown as stacks of outcomes over the ticks of the horizontal axis. We
say we have observed an event if we have observed any one of its outcomes
as a result of random experimentation—also called a random draw or trial.
The vertical axes display the likelihood of observing each event expressed
as the number of ways in which it can be obtained (i. e., the number of
outcomes in the event) out of the total number of outcomes possible in
this experiment (i. e., the size of the sample space). These quantities are
what we call probabilities—a numerical description of our uncertainty
about events. In this context, one can interpret the probability of an event
as the sample frequency with which we would observe it should we repeat
the experiment indefinitely.�

This chapter is about probability theory, which deals with the formal
foundations of how uncertainty can be quantified. Probability theory
is not concerned with giving an interpretation to probability (this is
a concern of philosophy) nor does it give us mechanisms to derive
probability values from experience or observations about reality (this
is a concern of statistics), rather it gives this concept (i. e., probability)
a rigorous treatment in terms of a small but powerful set of axioms.
Probability theory provides solid mathematical foundations for statistics,
decision theory, statistical mechanics, and, of course, machine learning,
data analysis, and applications thereof.

ILOs

After completing this chapter, you should be able to

I define a probability space
I calculate probability queries
I explain random variables and probability distributions
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B.� Probability Spaces

Probability theory is about assigning probability to subsets of elements
of a special set, which we call sample space of a random experiment. This
section will concentrate on countable sets (often referred to as discrete
sets), but the theory can be extended to include uncountable sets too.

A set is an unordered collection of ele-
ments. Examples: the countably finite set
of ‘strictly positive odd numbers smaller
than ��’ {1, 3, 5, 7, 9}, the countably infi-
nite set of ‘natural numbers’ N, and the
uncountable set of ‘real numbers’ R.

We use ⌦ to denote a sample space, and $ 2 ⌦ to denote members of
that space. A member is usually referred to as an outcome or a sample.

The notation $ 2 ⌦ says that the element
$ is a member of the set ⌦. The symbol 8
indicates the opposite of that.

Example B.�.�

Examples of random experiments and their sample spaces:

The Cartesian product of sets � and ⌫,
denoted �⇥ ⌫ and defined as {(0 , 1) : 0 2
� and 1 2 ⌫}, is the set of all pairs (0 , 1),
where 0 2 � and 1 2 ⌫. The definition can
be extended to more than two sets in an
analogous way.

I in a coin toss, the coin can land showing ‘heads’ (H) or ‘tails’
(T), thus ⌦ = {H, T};

I a �-sided die can roll an integer from � (included) to � (included),
thus ⌦ = {1, 2, 3, 4, 5, 6};

I rolling a ��-sided die followed by rolling a �-sided die yields
pairs of numbers where the first number ranges from � (included)
to �� (included) and the second number ranges from � to �, thus
⌦ = {1, 2, 3, 4, 5, 6, 7, 8, 10} ⇥ {1, 2, 3, 4, 5, 6}.

In the last example, we use a shortcut, namely, rather than writing
down the �� pairs of integers in the sample space, we use the Cartesian
product of the sample spaces of the individual die rolls.

Exercise B.�.�

What’s the sample space associated with drawing � card from a
standard ��-playingcard deck?

The notation � ✓ ⌦ denotes inclusion,
that is, � is a set whose members are
elements of ⌦. We say that � is a subset
of ⌦ or, equivalently, that ⌦ contains �.

In a sample space we enumerate individual outcomes of a random
experiment (e.g., the possible results of a die roll). However, rather than
outcomes themselves, we often care about properties of these outcomes.
For example, we may be interested in whether the outcome of a die roll
is an even number. We call an event any set of outcomes that is a subset
of the sample space.

If ⌦ is a sample space, any subset � ✓ ⌦
is an event with respect to ⌦.

Example B.�.�

Examples of events: The empty set denoted ; or {} is the unique
set having no elements in it. For any set �,
denoted 8�, i) ; ✓ �—the empty set is a
subset of �, ii) � [ ; = �—the union of
� with the empty set is �, iii) � \ ; = ;—
the intersection of � with the empty set
is empty, iv) � ⇥ ; = ;—the Cartesian
product of � with the empty set is empty.

I roll a �-sided die and get �: {1};
I toss a coin and get whatever outcome: {H, T} — this event

happens to be the entire sample space for the coin toss;
I roll a six-sided die and get an even number bigger than �: {4, 6}.
I roll a six-sided die and get a ��: ; — a �� is impossible (see

Figure B.�), the empty set denotes such impossible events.

Exercise B.�.�

Represent the following events for the sample space of Exercise B.�.�:
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�. pick an ‘A’ of };
�. pick an ‘A’;
�. pick a }.

An event space associated with a sample space ⌦ is a set Asuch that: The relative complement of � in ⌦, de-
noted by ⌦ \ � or ⌦ � �, and also called
the set-theoretic difference of ⌦ and �, is
the set of all elements that are members of
⌦, but not members of �.

The union of � and ⌫, denoted by � [ ⌫,
is the set of all things that are members of
� or of ⌫ or of both.

The intersection of � and ⌫, denoted by
� \ ⌫, is the set of all things that are
members of both � and ⌫.

The intersection � \ ⌫ can be paraphrased
as⌦\((⌦\�)[(⌦\⌫)). This is an instance
of DeMorgan’s laws from set theory.

a. ⌦ 2 A;
b. if � 2 A, then ⌦ \ � 2 A;
c. if �, ⌫ 2 A, then � [ ⌫ 2 A.

These axioms (i. e., properties that must hold) may seem a bit arbitrary at
first, but they are quite reasonable, let’s reword them here:

a. the sample space is an event in the event space;
b. if we can observe �, then it must be possible to observe the

complement of � in ⌦—we say A is closed under complementation;
c. if we can observe � and we can observe ⌫, then it must be possible

to observe their union—we say A is closed under countable unions;

These properties also have two subtle consequences, namely,

d. if �, ⌫ 2 A, then � \ ⌫ 2 A—we say A is closed under countable
intersections;

e. by axiom (b) ⌦ \ � 2 A, by axiom (a) ⌦ 2 A, thus making � = ⌦
it follows that ; 2 A.

The former can be shown by paraphrasing set intersection in terms of
operations like unions and complements. Properties (b–d) state what
operations take events as inputs and return events as outputs. Their
significance may not be immediately obvious, but soon we will design
a special function whose domain is the event space, then it will be
convenient to know that complement, union and intersection can never
take us out of the event space.

In this course, we will always make the implicit assumption that for a
sample space of interest ⌦, a valid event space Aexists. For countable
sample spaces, in particular, we will always take the event space to be
the powerset of the sample space, denoted P(⌦).

The powerset of a countable set ⌦, de-
noted P(⌦), is the set of all subsets of ⌦,
which thus includes the empty set and
⌦ itself. For any discrete sample space ⌦,
the power set P(⌦) always satisfies the
conditions of a valid event space.

In mathematics, a measure is a function
that maps elements from a set of sets (such
as events in an event space) to real num-
bers and for which crucial formal prop-
erties hold. The notion of measure gen-
eralises common notions such as length,
area, volume, and, of course, probability.

We can now develop the so called probability measure. Start by associat-
ing an event space Awith a sample space ⌦, then a probability measure
P : A! R maps each event in the event space to a real number which
we call a probability. For a probability measure, it must hold that:

In some textbooks, the probability mea-
sure P is denoted Pr, which is possibly
more convenient for a handwritten essay.

�. P(�) � 0 for all � 2 A;
�. P

�S
=

8=1 �8
�
=

P
=

8=1 P(�8) for a countable collection {�1 , . . . ,�=} ✓
Aof pairwise disjoint events;

�. P(⌦) = 1.

Let’s digest those: If �8 \ �9 = ;, then �8 and �9 have no
elements in common and are said to be
disjoint sets.�. the smallest probability value attainable by any event is �;

�. the total probability assigned to = pairwise disjoint events is the
sum of the probability values assigned to each of the = events;

�. the event which is the set of all possible outcomes is assigned a
total probability value of �.
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Suppose we are rolling a �-sided die. The sample space is ⌦ =
{1, 2, 3, 4, 5, 6}. There are many events we can be interested in:

I ‘rolling �’ represented by the set {1};
I ‘rolling �’ represented by the set {2};
I ‘rolling either � or �’ represented by the set {1, 2};
I ‘rolling an odd number’ represented by the set {1, 3, 5};
I ‘rolling more than �’ represented by the set {3, 4, 5, 6};
I ‘rolling whatever’ represented by the set {1, 2, 3, 4, 5, 6}, which

is exactly equivalent to the complete sample space ⌦;
I etc.

There are so many things about this sample space that we may be
interested in, that we just assume we may potentially be interested in
any event in P(⌦). We can then talk about a probability measure P
for the event space, whatever probability values this measure assigns
to the events, this measure must be such that:

�. the smaller probability value assigned to any single event in the
event space is �;

�. if we take disjoint events such as ‘rolling �’ {1} and ‘rolling �’ {2},
the total probability value assigned to the event ‘rolling � or �’
{1, 2} is the sum of probability valuesP({1, 2}) = P({1}[{2}) =
P({1}) + P({2});

�. the event ‘rolling whatever’ has probability P(⌦) = 1.

The probability measure is a positive measure (i. e., no event can
have negative probability) bounded such that the probability of the
universe (i. e., the event that consists of the entire sample space) is 1.

It may not look obvious at first, but properties �–� imply that:

�. P(;) = 0;
�. P(� [ ⌫) = P(�) + P(⌫) � P(� \ ⌫) for events �, ⌫ 2 A;
�. P(⌦ \ �) = 1 � P(�) for an event � 2 A.

Let’s digest those too: The inclusion-exclusion principle is a tech-
nique which generalises property (�) and
extends it to more than � events.�. says that the empty event has probability �, that is, if we observed a

random experiment something must have happened;
�. is a generalisation of property (�) which does not require disjoint

events;
�. is also called the complement rule.

We now define the concept of a probability space. A probability space is
a triple (⌦,A,P) consisting of a sample space ⌦, an event space A, and
a probability measure P.

Example B.�.�

Here we present the probability space of a fair coin flip.

A coin can land heads (H) or tails (T), thus the sample space for the
probability space of this random experiment is ⌦ = {T,H}.
For the event space Awe will use every possible subset of ⌦, that is,
the powerset of ⌦. That is, A= {;, {H}, {T}, {H, T}}.
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Table B.�: Probability measure for a fair
coin flip.

� 2 P(⌦) P(�)
; 0
{H} 1/2

{T} 1/2

{H, T} 1

Table B.�: Probability measure for a
crooked coin flip with odds 2 : 1 for heads.

� 2 P(⌦) P(�)
; 0
{H} 2/3

{T} 1/3

{H, T} 1

Probability theory does not tell us where probability values come
from, it only prescribes the formal properties of probability spaces.
There are infinitely many probability measures that lead to valid
probability spaces for an arbitrary experiment involving coin flips (we
will describe one now, and another one in the next example), all those
measures have one thing in common, they comply with axioms �–�.

Fortunately, we are concerned with a very specific coin flip, namely,
the flip of a fair coin. Because the coin is fair, we can establish the
probability of an event using the event’s cardinality—the number of
outcomes in it—relative to the cardinality of the sample space. That is,
for an event � 2 A, it holds that P(�) = |�|

|⌦| . Note that this definition
cannot be used for sets of infinite size—for those we will develop
other analytical tools later on.

Now that we have a mechanism to assign probability to events, we
can characterise the entire probability measure. For example, the
event ‘coin lands heads’, denoted {H}, is a set that contains a single
outcome—its size or cardinality is �—thus its probability in this
probability space is |{H}|/|⌦| = 1/2. The complete probability measure
for this probability space is shown in Table B.�.

Note that, to specify Table B.�, we did not have to refer back to the
axioms �–� (nor properties �–�), but the resulting measure, as it
turns out, complies with them. That is so because the function that
assigns probability |�|

|⌦| to � 2 P(⌦) prescribes a valid probability
measure, so long as the sample space is countably finite. This does not
mean, however, that this measure is always appropriate to describe the
random experiment of interest, as the next example shall demonstrate.

The cardinality of a countably finite set
�, denoted |�|, is the number of elements
in it. The cardinality of the empty set is
defined to be 0. Examples: |;| = 0, |{10}| =
1, |{red, blue}| = 2.

Example B.�.�

Here we present the probability space of a crooked coin flip, this
particular coin was designed to land heads twice as often as it lands
tails (i. e., the odds of landing heads is 2 : 1).

As before, we have a coin flip, thus ⌦ = {T,H}. As before we use the
powerset of ⌦ as the event space A= {;, {H}, {T}, {H, T}}.
Unlike before, this coin is crooked, so the measure that assigns
probability |�|

|⌦| to an event � 2 A is of no help here. We do, however,
have access to a key piece of information, which, when combined
with the axioms of probability �–� (and properties �–�), allows us to
work out the probability measure for this probability space.

The information we have access to is the odds of obtaining heads,
which is 2 : 1.

Odds convey information about the likeli-
hood of a particular outcome in gambling.
Odds of an outcome $ are denoted = : <
(and pronounced = to <), where = is the
number of events that produce that out-
come, and < is the number of events that
do not. We can convert the odds of $ to the
probability of the event {$} via =

=+< . Ex-
ample rolling a fair �-sided die: the odds
of rolling a � is 1 : 5.

This means the event ‘landing heads’ {H} has probability
P({H}) = 2/3. Using axiom �, we can write P({H, T}) = P({H}) +
P({T}), we also know, from axiom �, that P({H, T}) = 1 for {H, T}
is the entire sample space ⌦. This means that 1 = 2/3 + P({T}), and
thus P({T}) = 1/3 (property � would have been a shortcut to derive
the same result). With little work left, we can justify the probability
measure in Table B.�.

As the last two examples demonstrate, there are different strategies
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to working out the probability measure that best describes a given
random experiment. And—one can never stress it enough—probability
theory does not tell us which probability measure we should use, it
only tells us what properties must hold for every probability measure.
It is on us to find in the application domain (or in the description of
a given random experiment) the information that will constrain us to
an appropriate choice. Next we will develop some powerful tools to
manipulate probability measures, these tools will power a framework for
the compact specification of very complex probability spaces.

Exercise B.�.�

Describe the probability space of two fair coin flips. Do assume the
experimenter has no interest in interfering with the experiments and
the coins land completely independently of one another. For practice,
evaluate the probability measure for every event in the powerset of
the sample space.

The probability of a countable union of events �1 , . . . ,�= tells us the
probability with which any of the events �1 , . . . ,�= should occur—
recall, an event occurs if one of its outcomes occurs. Now we turn to
the probability with which all of these events should occur. The joint
probability of a countable set of events {�1 , . . . ,�=} is

P(�1 \ · · · \ �=) . (B.�)

All we need is to evaluate the intersection of the events and, because
event spaces were defined very carefully, the intersection is guaranteed
to be in the domain of the probability measure.

Example B.�.�

Consider experiments involving two coin flips.

Let the sample space be ⌦ = {HH,HT, TH, TT}, and the event space
be A= P(⌦).
The event ‘tossing at least one heads’ is the set � = {HH,HT, TH}.
The event ‘tossing at least one tails’ is the set ⌫ = {TT, TH,HT}.
If we are interested in any of the two events, we are interested in
any outcome that indicates that � or ⌫ or both occurred, that is,
we are interested in outcomes in � [ ⌫—an event with probability
P(� [ ⌫) = P({HH,HT, TH, TT}) = 1.

If we are interested in scenarios where it can be said that both events
occurred, then we are interested in any outcome that indicates that
� as well as ⌫ occurred, those can only be outcomes that are shared
by both sets, that is outcomes in � \ ⌫—an event with probability
P(� \ ⌫) = P({HT, TH}).
Note that we do not know enough about the coins to specify the
numerical values of the probability measure.

In many situations we start from a probability space (⌦,A,P), and,
upon observing an event �9 , we exclude outcomes not in �9 from further
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Table B.�: Example of probability measure
for two coin flips.

� 2 A P(�)
{HH} 1/3

{HT} 1/6

{TT} 1/3

{TH} 1/6

Table B.�: Example of probability measure
for two coin flips conditioned on ‘tossing
heads first’ �1.

⌫ 2 A ⌫ \ �1 P(⌫|�1)
{HH} {HH} 1/3r · 1/2 = 2/3

{HT} {HT} 1/6r · 1/2 = 1/3

{TT} ; 0
{TH} ; 0
· · · · · · · · ·

consideration. This essentially results in a closely related probability space
(�9 ,A,P(·|�9)) whose probability measure is the so called conditional
probability measure, which assigns probability

P(�8 |�9) B
P(�8 \ �9)

P(�9)
(B.�)

to an event �8 2 Aconditioned on an event �9 2 Awith P(�9) > 0.

Example B.�.�

Consider the experiment involving two coin flips, Example B.�.�, and
use the probability measure shown in Table B.� (note that missing
values can be inferred by using the axioms of probability).

Via axiom (�), the event ‘tossing heads first’�1 = {HH,HT} has prob-
ability P(�1) = P({HH} [ {HT}) = 1/3 + 1/6 = 1/2. As the probability
is greater than zero, we can condition on it and obtain the probabil-
ity space (�1 ,A,P(·|�1)) whose conditional probability measure is
(partly) listed in Table B.�. The first column lists the events in the
event space, the second column is obtained by intersecting an event
with �1, and the third column by application of the definition of
conditional probability.

Exercise B.�.�

Complete the specification of the conditional probability measure in
Table B.� by evaluating it for every event in the event space A.

Last, but not least, two events �8 ,�9 are said to be independent if

P(�8 \ �9) = P(�8) ⇥ P(�9) . (B.�)

Independence of two events is denoted �8 ?? �9 (the notation �8 ? �9 is
also common). Moreover, for �8 ?? �9 and P(�9) > 0, it holds:

P(�8 |�9) =
P(�8 \ �9)
%(�9)

indep.
=

P(�8) ⇥���P(�9)

���P(�9)
= P(�8) . (B.�)

Independence will turn out a useful concept when we design probability
measures over very complex event spaces.

Exercise B.�.�

Is the event ‘tossing two heads’ independent of the event ‘tossing
heads first’ in the probability space of the experiment two coin flips
with probability measure given by Table B.�?
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B.� Discrete Random Variables

You may have noticed two laborious things about probability spaces. There was one instance in which we char-
acterised a probability measure with the
help of an auxiliary function: when deal-
ing with fair coin flips we told you that the
function |�|/|⌦| specifies a measure that is
not only appropriate to capture the prop-
erties of the random experiment (i. e., that
the coin is not crooked) but also, crucially,
that measure properly complies with the
axioms of probability theory. This may not
look like a lot at first, but think about it. Is it
easier to list the 24 = 16 events in the event
space A = P({H, T} ⇥ {H, T}) and their
probabilities, or to compute the probability
of any event � 2 Aon demand by simply
storing the relation P(�) = |�|/|⌦|? Ran-
dom variables will helps us design tools
as convenient as this simple functional re-
lation between the size of the event and
the size of the sample space, but for the
most diverse probability spaces.

First,
we need to start from a sample space, even though sometimes we only
care about specific properties of outcomes. For example, in an experiment
involving drawing �-hand cards from a standard ��-playingcard deck, all
we might care about is the number of cards of club suit |. Second, for a
probability space (⌦,A= P(⌦),P), specifying the probability measure
roughly requires listing all the events in the event space and working
their probabilities out one by one. While this is doable for small sample
spaces (e.g., � or � coin flips), it quickly gets rather tedious (e.g., in role
playing games it is not unusual to roll � six-sided dice and add some
character-specific constants to compute physical damage inflicted in a
battle), or essentially impossible (e.g., the length of the byte sequence
that represents a file in a modern computer is a natural number, finite,
but potentially unbounded). To help create efficient analytical tools that
compactly characterise complex probability spaces, we will need some
tools to change the interface with which we interact with the basic
elements of probability theory.

The first thing on our way to these amazing tools is—wait for it—the
sample space. In probability theory, the sample space is too fundamental
a concept, so this must be bad news. Take a moment to recover from this.
A sample space is a set, a fairly general object that hosts whatever we
are interested in. This generality is purposeful, it is what allows us to
reason about experiments whose outcomes are the most diverse things
imaginable, but it stands on the way to other desiderata (e.g., having a
simple parametric mechanism to relate outcomes to their probability).
The answer to this is to introduce a map from an arbitrary sample space
(e.g., �-card hands drawn from a standard ��-playingcard deck) to a
more convenient (numerical) set. A discrete random variable - on a
probability space (⌦,A,P)

i. is a function - : ⌦ ! X from the sample space ⌦ to a countable
subset Xof R,

ii. such that, for any G 2 X, the set defined as {$ 2 ⌦ : -($) = G},
also denoted -�1(G), is an event in the event space A.

The sample space ⌦ is also called the domain of the random variable.
The subset Xof R to which the outcomes $ 2 ⌦ are mapped to is called
the range (or image) of the random variable.

For the range, we will generally use a calli-
graphic counterpart to the letter used for
the random variable. Soon we will have
experiments with multiple random vari-
ables, and, to distinguish sample spaces,
we will normally subscript ⌦ with the
name of the random variable associated
with it. Examples: the random variable -
has domain ⌦- and image X ⇢ R, the
random variable . has domain ⌦. and
image Y⇢ R.

An element G 2 X is called
an outcome of the random variable. The set -�1(G) 2 A is the event
mapped to outcome G.�

�: Mathematically, for G 2 X, -�1(G) is
known as the fiber over G under -.

This mapping allows us to work on a numerical
space (X⇢ R) no matter the nature of the sample space ⌦.

Example B.�.�

We have three urns, each contains balls that are blue and/or red. We
draw a ball from each urn in sequence.

The sample space is the set of all sequences of size three ⌦ = {b, r}3

(‘b’ as a short for blue and ‘r’ as a short for red) where an element of
the sequence is either blue or red.

For a sequence $ 2 ⌦, we use $8 to indicate the colour of the
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8th ball in the sequence, the number of red balls drawn by the
person can be captured by a random variable: ' : ⌦ ! R such that
'($) = P

8=1[$8 = r].

The Iverson bracket, denoted [�] is a com-
pact way to map the result of a boolean
predicate � to a real number. It evaluates
to 1 when � is true, and to 0, otherwise. For
example, with $ = rbr, [$1 = r] evaluates
to �, but [$2 = r] evaluates to 0.

The probability distribution of a random variable - is denoted by %-
and is defined as the function It is also common to use % for the probabil-

ity distribution of the random variable -.
As we did before, for sample spaces, we
subscript % with - (as in %- ) for clarity.

%-(- = G) B P({$ 2 ⌦ : -($) = G}) . (B.�)

A lot has just happened. First things first. The notation - = G is another
way of writing -

�1(G) or, equivalently, {$ 2 ⌦ : -($) = G}. The
probability distribution assesses the probability of the event that - maps
to G. The quantity %-(- = G) is pronounced ‘probability that the random
variable - takes on the value G’.

Notation matters. • In addition to the
clear (albeit lengthy) notation %- (- = G),
we find in the litearture many uses of
%(- = G), %- (G) and %(G). The last three
can be confusing without additional in-
formation. Of the three briefer options,
%(- = G) is the least ambiguous. The sub-
script - in %- helps us remember what
random variable this distribution is the
probability distribution of, which becomes
particularly helpful when manipulating
multiple random variables. • A random
variable is a function and when we write
- = G we are in fact instantiating an event
(i. e., a set of outcomes from the sample
space), if we drop the ‘- =’ part (as in
the briefer forms %- (G) and %(G)) it is
hard to tell that we mean to provide the
event -�1(G) = {$ 2 ⌦ : -($) = G},
as opposed to the real number G, as an
argument of the probability measure (if
you are used to programming languages:
%- (real number) would raise a ‘type er-
ror’, since probability measures take events
built from ⌦ as arguments). Consider the
�-urns example, ' = 2 in that probability
space means {rrb, rbr, brr}, whereas 2 is
just a number. • A notation like %(G) does
not help remember the random variable
name (i. e., we dropped the subscript -)
and violates the definition of the probabil-
ity measure (since its argument should be
an event), hence this is the least preferred
option. In this book, we will use the nota-
tion %- (- = G) to evaluate the probability
of the event - = G under the probability
distribution %- of the random variable - .

Sometimes we will be interested in the set of outcomes of - to which
the probability distribution %- assigns non-zero probability. This set is
called the support of the distribution %- and defined as:

supp(-) = {G 2 X : %-(- = G) > 0} ✓ X . (B.�)

Random variables are so convenient that we will normally never bother
defining the sample space (nor the event space). Instead, we will often
define the random variable in a more or less declarative way, rather than
through formulae. For example, let ' take on the number of red balls in
a sequence of balls drawn from three adjacent urns, each urn containing
a mixture of blue and red balls.

The cumulative distribution function (or cdf for short) of a random
variable - is given by

�-(0) B %-(-  0) =
X
G0

%-(- = G) . (B.�)

Note that, unlike the probability distribution, the cdf takes real values
(not events) as inputs. That is so because �-(0) always evaluates the
probability of the event {$ 2 ⌦ : -($)  0}, also denoted -  0 for
short.

Finally, we get to the concept that will power the compact laws that we
will be using to describe various probability measures. A probability
mass function (or pmf for short) can be defined for a random variable -
as follows:

5 (G) B %-(- = G) . (B.�)

The pmf is defined with a specific probability distribution in mind, and it
gets an arbitrary name.

The pmf can be denoted by ?(G), an-
other lowercase letter (e. g., 5 (G)), a Greek
letter (e. g., �(G)), a person’s name (e. g.,
Bernoulli(G)), amongst many other ways.
We may subscript it with- for clarity (e. g.,
?- (G), 5- (G), �- (G)). Unlike the probabil-
ity distribution %- , the pmf takes real
values as arguments (i. e., its domain is the
random variable’s image X⇢ R).

The pmf creates a standard real function interface
to a probability distribution, allowing us to drop all the notational
devices necessary for probability distributions and random variables.
Its significance does not come from any perceived brevity of notation,
but rather from the fact that we can now prescribe functions (in R) that
in turn characterise probability distributions, that in turn characterise
probability measures.

Oftentimes, a pmf relates the probability mass of G to the value G itself
and some fixed quantity  called the pmf’s parameter.

The parameter of the pmf is sometimes
denoted explicitly, common choices are
5 (G |), 5 (G;) and 5(G), but sometimes it
is also simply assumed clear from context.
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Example B.�.�

The uniform probability mass function Uniform(G |#) assigns proba-
bility mass [G2{1,...,#}]

#
to G 2 {1, . . . ,#} and 0 to any other value.

Example B.�.�

The Bernoulli distribution is the distribution of a random variable -
that takes on values in {0, 1} ⇢ R with probability mass function:

Bernoulli(G |) = G(1 � )1�G . (B.�)

Example B.�.�

The Geometric distribution is the distribution of a random variable -
that takes on values in N0 ⇢ R with probability mass function:

Geometric(G |) = (1 � )1�G . (B.��)

It can be used to model the number of failures until a success.

Why do we need pmfs when we have distribu-
tions? The pmf is associated with a given
random variable, so we can stop carry-
ing the notation for rvs around. The pmf
also helps us specify the probability distri-
bution by a compact parametric function,
and, because we can name the pmf, we
can use names that help us remember that
functional form. See examples of pmfs in
Chapter C, they nicely illustrate this point.

We can use subscripts to name pmfs in a
self-evident way without having to intro-
duce new names/letters. For example, we
can use 5- (G) and 5.(H) for the pmfs of -
and ., respectively. We can use 5

. |-=G(H)
to denote the pmf that prescribes the con-
ditional distribution%

. |-=G of the random
variable . given - = G. It is also common
to use 5

. |- (H |G), though this is a slight
(but intelligible) abuse of the conditioning
notation.

The elementary results from probability theory all extend to random
variables.

Random variables -1 , . . . ,-# , which we abbreviate as -#

1 are said to be
jointly distributed with probability distribution %

-
#

1
if

%
-
#

1
(-#

1 = G
#

1 ) = P({$ 2 ⌦ : -1($) = G1 , . . . ,-# ($) = G# }) . (B.��)

Implicit in this definition is the fact that these random variables must
share an underlying sample space, and that some underlying event space
exists. In applications, we usually do not care about the formalities of
the sample space, we only care about quantities that we can capture
with random variables. Random variables allow us to take these great
shortcuts without running the risk of compromising the formal validity
of our probability spaces, but also without having to carefully specify
their every aspect.

From the joint distribution, we can also recover the distribution of the
individual variables by an operation called marginalisation. Suppose we
have two random variables - and . which are jointly distributed with
probability distribution %-. , we can obtain marginal probabilities by
‘summing away’ the possible values of one of the random variables:

%-(- = G) =
X
H2Y

%-.(- = G ,. = H) . (B.��)

Let - and . be random variables with joint distribution %-. , the proba-
bility of - = G conditioned on . = H is given by

%
- |.(- = G |. = H) = %-.(- = G ,. = H)

%.(. = H) (B.��)

and the conditional distribution of - given. = H is denoted by %
- |.=H .
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Two random variables - and . with joint distribution %-. are said
to be independent (denoted by - ?? .) if 8G 2 supp(-) and 8H 2
supp(.) : %-.(- = G ,. = H) = %-(- = G)%.(. = H), also denoted
%-. = %-%. .

We close this section with two important results that will help us design
probability distribution for complex random experiments and infer the
result of probability queries.

The chain rule of probabilities:

%-.(- = G ,. = H) = %-(- = G)%
. |-(. = H |- = G) (B.��a)

= %.(. = H)%
- |.(- = G |. = H) (B.��b)

and by induction

%
-
#

1
(-1 = G1 , . . . ,-# = G# ) =

#Y
==1

%
-= |-<= (-= = G= |-<= = G<=) ,

(B.��)
where -<= is the (possibly empty) sequence preceding -= . The order of
enumeration is arbitrary.

The Bayes rule All results presented for probability distri-
butions extend to probability mass func-
tions of the corresponding random vari-
ables. That is, if we denote the pmf that
prescribes the joint distribution of - and
. by 5-.(G , H), there exist a collection of
pmfs of the form 5- (G), 5.(H), 5. |-=G(H)
and 5

- |.=H(G), such that 5-.(G , H) =
5- (G) 5. |-=G(H) = 5.(H) 5- |.=H(G).

is an application of conditional probability to infer, for
example, %

- |.(- = G |. = H) from a joint distribution %-. = %- ⇥ %
. |- ,

where %- and %
. |- are known. The result is as follows:

%
- |.(- = G |. = H) = %-.(- = G ,. = H)

%.(. = H) , (B.��a)

which follows directly from the definition of conditional probability, then
we factorise the joint distribution in the numerator exploiting the fact
that we know the factors %- and %

. |- :

=
%-(- = G) ⇥ %

. |-(. = H |- = G)
%.(. = H) , (B.��b)

next, we rewrite the denominator using marginal probability

=
%-(- = G) ⇥ %

. |-(. = H |- = G)P
G
02X%-.(- = G

0
,. = H) , (B.��c)

and factorise the joint probability in the sum via chain rule

=
%-(- = G) ⇥ %

. |-(. = H |- = G)P
G
02X%-(- = G

0) ⇥ %
. |-(. = H |- = G

0) .

(B.��d)

As, by assumption, we can assess %-(- = G) and %
. |-(. = H |- = G) for

any G and H, the result allows us to invert the conditional %
. |- .
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�: To give some intuition (though not ex-
actly accurate), here is a hypothetical way
to construct it: i) start with all open inter-
vals�1 ,�2 , . . . of⌦, ii) then gather all sets
obtainable via union or intersection of any
countable subset of those.

�: Mathematically, for ⌫ ✓ X, -�1[⌫] is
known as the preimage of ⌫ under -.

B.� Continuous RVs

All of probability theory extends to events defined on uncountable sample
spaces. Good examples include continuous measurements (e.g., outside
temperature, distance, volume, intervals of time), proportions (e.g., per-
centage of voters), amongst many others. As before, we have a sample
space ⌦, this time an uncountable set. We also need an event space A

made of special subsets of ⌦ that can be regarded as events, the precise
definition is beyond the scope of this book. For the event space, we will
use the so-called Borel �-algebra of the sample space, denoted B(⌦).
Think of this as a generalisation of the powerset construction for un-
countable sets.� Finally, we have a probability measure P : A! [0, 1]
assigning probability to events in A. The probability measure complies
with the same axioms as before.

A continuous random variable - on a probability space (⌦,A,P)
i. is a function - : ⌦ ! X from the (uncountable) sample space ⌦

to an uncountable subset Xof R, where again X✓ R is the range of
the random variable,

ii. such that, for any set ⌫ 2 B(X), the set defined as -�1[⌫] = {$ 2
⌦ : -($) 2 ⌫} is an event in the event space B(⌦).�

An element G 2 X is called an outcome of the random variable. ⌫ 2 B(-)
is a subset in the range of the random variable (e.g., an interval such as
(0, 1), or the union of disjoint intervals such as (0, 1)[ (2, 3)),the notation
- 2 ⌫, which we pronounce ‘the random variable - takes on a value in
⌫’ is a shorthand for the event {$ 2 ⌦ : -($) 2 ⌫} 2 A.

In the continuous case, a single outcome - = G always has probability 0
(we say singletons are not measurable), while sets of outcomes - 2 ⌫
may have non-zero probability (then we say they are measurable). An
outcome G 2 X can be assigned what we refer to as probability density, a
non-negative quantity used in combination with Lebesgue integration to
quantify the probability of events. A probability density function (pdf)
5 : X! R�0 is such that

Ø
X
5 (G)dG = 1. With it, we can characterise the

probability of - 2 ⌫ :

%-(- 2 ⌫) =
π
⌫

5 (G)dG . (B.��)

When ⌫ is a continuous interval (0 , 1) 2 R, we have %-(- 2 ⌫) =Ø
1

0

5 (G)dG. Instead, when ⌫ is a countable union of disjoint intervalsS
82�(08 , 18), we have %-(- 2 ⌫) = P

82�
Ø
18

08

5 (G)dG. The pdf can also be
characterised in terms of a cumulative distribution function �-(G):

5 (G) = d
dG
�-(G) . (B.��)

When ⌫ is a continuous interval (0 , 1) 2 X, we have %-(- 2 ⌫) =
�-(1) � �-(0). Instead, when ⌫ is a countable union of disjoint intervalsS
82�(08 , 18), we have %-(- 2 ⌫) = P

82� �-(18) � �-(08).
As always, our goal is to prescribe a probability measure that complies
with the axioms of probability theory, pdfs and cdfs are devices that help
us achieve that goal. Whether we start by specifying a cdf and compute
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the pdf by differentiation, or start by specifying a pdf and compute
the cdf by integration is mostly a matter of practical convenience. So
long as we specify these devices coherently, we will be prescribing valid
probability measures for random experiments involving continuous
random variables.

Example B.�.�

The Exponential distribution is the distribution of a random variable
- that takes on values in R>0 with probability density function:

Exponential(G |) =  exp(�G) . (B.��)

Its parameter is strictly positive (i. e.,  > 0) and is known as rate. By
definition, the Exponential pdf assigns 0 density to any number G  0.
This model can be used to describe the time between events that occur
continuously and independently at a constant average rate.

The Exponential cdf is known in closed-form: �-(G) = 1 � exp(�G),
a result which we can verify by expressing the derivative of �-(G)
with respect to G.

Example B.�.�

The Beta distribution with shape parameters � > 0 and � > 0 is the
distribution of a random variable - that takes on values in (0, 1) with
probability density function:

Beta(G |�, �) = G
��1(1 � G)��1

B(�, �) , (B.��)

where B(�, �) is the Beta function is a generalisation of binomial
coefficients. This model can be used to describe random proportions
(or percentages).

There is no simple form for the cdf of the Beta distribution, but most
computations involving it can be reliably approximated by computers.

Example B.�.�

The Normal distribution with location ⇠ 2 R and scale � 2 R<0 is the
distribution of a random variable - that takes on values in R with
probability density function:

N(G |⇠, �2) = 1
�
p

2�
exp

✓
� (G � ⇠)2

2�2

◆
. (B.��)

The Normal is a good model for random quantities that distributed
symmetrically around a central tendency. The Normal location is also
its mean, while the squared of the scale is its variance (making the scale
its standard deviation). Another name for the Normal distribution
is the Gaussian distribution. There is no simple form for the cdf of
the Normal distribution, but most computations involving it can be
reliably approximated by computers.
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Listing B.�: Typesetting suits in LATEX.

I $\clubsuit$ for |;
I $\diamondsuit$ for };
I $\heartsuit$ for ~;
I $\spadesuit$ for �.
Listing B.�: Typesetting sets in LATEX.

I $\{\}$ for {};
I $\left\{\frac{1}{10}\right\}$

for
� 1

10
 
.

Table B.�: Probability measure for two
independent fair coin flips.

� 2 A P(�)
{} �

{HH} 1/4

{HT} 1/4

{TT} 1/4

{TH} 1/4

{HH,HT} 1/2

{HH, TH} 1/2

{HH, TT} 1/2

{HT, TH} 1/2

{HT, TT} 1/2

{TH, TT} 1/2

{HH,HT, TH} 3/4

{HH,HT, TT} 3/4

{HH, TH, TT} 3/4

{HT, TH, TT} 3/4

{HH,HT, TH, TT} 1

B.� Solutions
Exercise B.�.�

{�, 2, 3, 4, 5, 6, 7, 8, 9, 10, � ,& ,  } ⇥ {|, },~, �}

Exercise B.�.�

�. {A}};
�. {A},A~,A�,A|};
�. {2}, 3}, 4}, 5}, 6}, 7}, 8}, 9}, 10}, J},Q},K},A}}

Exercise B.�.�

For a complete probability space we have to specify a sample space
⌦, an event space A, and a probability measure P.

For a single coin flip, the sample space would be {H, T}, hence for
two coin flips with have ⌦ = {HH,HT, TT, TH}.
As the sample space is countable, we can use its powerset as the event
space A= P(⌦). In this way, all subsets of ⌦, including the empty
set and ⌦ itself, are valid events.

For probability measure we can use any function from A to R that
satisfies the basic axioms of probability. For this exercise in particular,
we have enough information to give a precise characterisation of
the probability measure of interest. As the coins are both fair, land
independently of one another, and the experimenter does not inter-
fere with trials, we can obtain the probability value of an event by
expressing its cardinality relative to the size of the sample space, as
shown in Table B.�.

Exercise B.�.�

Here we list the powerset of ⌦ = {HH,HT, TT, TH}, for easy of
inspection events are grouped by cardinality (but note that cardinality
has nothing to do with the probability measure in this exercise). I will
denote by �1 the event ‘toss heads first’ {HH,HT}, based on Table
B.� its probability is P(�1) = 1/2, which we compute via axiom (�).
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⌫ 2 A ⌫ \ �1 P(⌫|�1)
{} �

{HH} {HH} 1/3r · 1/2 = 2/3

{HT} {HT} 1/6r · 1/2 = 1/3

{TT} ; 0
{TH} ; 0

{HH,HT} {HH,HT} 1/2r · 1/2 = 1
{HH, TH} {HH} 1/3r · 1/2 = 2/3

{HH, TT} {HH} 1/3r · 1/2 = 2/3

{HT, TH} {HT} 1/6r · 1/2 = 1/3

{HT, TT} {HT} 1/6r · 1/2 = 1/3

{TH, TT} ; 0

{HH,HT, TH} {HH,HT} 1/2r · 1/2 = 1
{HH,HT, TT} {HH,HT} 1/2r · 1/2 = 1
{HH, TH, TT} {HH} 1/3r · 1/2 = 2/3

{HT, TH, TT} {HT} 1/6r · 1/2 = 1/3

{HH,HT, TH, TT} {HH,HT} 1/2r · 1/2 = 1

Exercise B.�.�

I will use �2 to denote the event ‘tossing two heads’ {HH}, and �1 to
denote the event ‘tossing heads first’ {HH,HT}. From Table B.�, the
intersection of the two �2 \ �1 = {HH} has probability 1/3.

If the two events were independent, then P(�2 \ �1)
indep.
= P(�2) ⇥

P(�1) = 1/3 ⇥ 1/2 = 1/6.

As P(�2 \ �1) < P(�2) ⇥ P(�1), �2 and �1 are not independent
events.

B.� Additional Exercises
Exercise B.�.�

Draw a diagram such as that of Figure B.� for the number of heads in
three independent fair coin flips.

Exercise B.�.�

Describe the probability space of two coin flips, performed in order,
where the first coin is crooked with odds 1 : 2 for heads, and the
second coin is fair. Evaluate the probability measure for every event
in the powerset of the sample space, and indicate facts that can be
used to support the probability value that you list. Valid facts include
information provided in the exercise, axioms �–�, or properties �–�.

Exercise B.�.�

Assume (⌦,A,P) is a probability space and �9 2 A is an event with
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P(�9) > 0. Use the axioms of probability to prove that P(·|�9) is a
probability measure.


