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Outline and goals
This self-study class is an introduction to probabilistic graphical
models (PGMs), in particular, directed graphical models (also
known as Bayesian networks).1

We will motivate the topic from an NLP point of view, then
discuss the topic in general terms.

ILOs 2 After this class the student
▶ understands the idea behind factorisation of probabilities;
▶ recognises a factorisation expressed graphically;
▶ can re-express probability queries using chain rule, conditional

probability, and marginalisation.

1To go far beyond of what we cover, check Koller and Friedman (2009).
2If, while working through this class, you find that you need a recap of probability theory, check, for example,

my lecture notes https://wilkeraziz.github.io/assets/pdfs/lecture-notes-appendix-B.pdf or this
Jupyter notebook https://colab.research.google.com/github/probabll/ntmi-tutorials/blob/main/
Discrete-Distributions.ipynb or any undergraduate text on probability and statistics.
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The problem

In NLP we design probability models involving structured data
such as documents, trees and graphs.

Typically, the sample spaces we care about are too large (e.g.,
the number of possible syntactic trees for a sentence grows
exponentially with sentence length)
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The problem
In NLP we design probability models involving structured data
such as documents, trees and graphs.

Typically, the sample spaces we care about are infinite (e.g.,
there is no obvious limit to how many different ways we could
write about our sentiment)
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The problem

In NLP we design probability models involving structured data
such as documents, trees and graphs.

Typically, the sample spaces we care about are
▶ too large (e.g., the number of possible syntactic trees for a

sentence grows exponentially with sentence length)
▶ or infinite (e.g., there is no obvious limit to how many

different ways we could write about our sentiment)
and, as a consequence, we cannot represent joint probability
distributions over these spaces by simply storing one probability
value for each possible outcome.

Not only we might not be able to store those, we probably cannot
estimate all necessary values from finitely many observations.
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A solution

Instead, what we do is we use our knowledge of the application
domain to motivate simplifying assumptions that make our
distributions simpler/feasible to specify.

The key to our solution is that we will be computing those
probabilities by manipulating a finite (and hopefully small) number
of elementary probability factors.
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Factorisation (intuition)

Remember when you learnt how to factorise natural numbers using
prime numbers? For example, 24 is 2 × 2 × 2 × 3.

The idea is very similar (not identical, but similar enough to give
you an intuition). Factorising into primes allows us to express all
composite (i.e., non-prime) numbers by multiplying together some
prime numbers. For any large but finite subset [1, M ] ∈ N we
consider, there are far fewer prime numbers than composite
numbers in it. When we see a number in this set, and it is not a
prime number, we can think of it as if we were seeing a
product-composition of primes, and factorisation into primes
reveals that construct.
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Factorisation (examples)
We decompose the probability of something which is ‘complex’ (or
at least ‘decomposable into parts’, e.g., a syntactic tree) into a
product of probabilities of simpler things (e.g., context-free tree
fragments).
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Factorisation (examples)

We decompose the probability of something which is ‘complex’ (or
at least ‘decomposable into parts’, e.g., a labelled document) into a
product of probabilities of simpler things (e.g., labelled word pairs).
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Notation

We use uppercase letters to denote random variables (rvs for short), e.g., X, Y .
Lowercase letters (e.g., x, y) are then used for outcomes. The range of an rv X
is denoted by a calligraphic letter X ⊆ R. The underlying sample space of X is
denoted by ΩX . An assignment X = x, with x ∈ X is an event (i.e., a subset
of ΩX), we pronounce this as “the rv X takes on the value x in its range”. For
convenience, we do not really distinguish the sample space and the range, esp
when dealing with discrete rvs, we just assume the reader can imagine some
fixed mapping from outcomes in ΩX to a subset of R, such as an enumeration.

We use PX(x) to denote the probability P (X = x), and, similarly with multiple
variables: PAB|C(a, b|c) = PBA|C(b, a|c) = P (A = a, B = b|C = c) = P (B =
b, A = a|C = c). When we refer to the distribution of X, we often use PX ;
then PXY is the distribution of the pair of rvs (X, Y ); and PY |X=x is the
conditional probability distribution (cpd) of the rv Y given the assignment
X = x. The notation PY |X then refers to the collection of all cpds of the kind
PY |X=x for any possible outcome x ∈ X of X.
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Factorising via chain rule

To factorise is to break into parts, to factorise a joint probability
like PAB(a, b) we can use chain rule and decompose it like this

PAB(a, b) = PA(a)PB|A(b|a)

or like that

PAB(a, b) = PB(b)PA|B(a|b)

We may prefer to work with one version or the other, but they are
both valid, and we are going to learn how to go from one to the
other whenever needed.
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Factorising via chain rule: more variables

Chain rule works with more variables too.

PABC(a, b, c) = PA(a)PB|A(b|a)PC|AB(c|a, b)

or

PABC(a, b, c) = PB(b)PC|B(c|b)PA|BC(a|b, c)

or . . . (you can guess other ways to factorise it).

You might have noticed one thing: our probability factors are
growing in complexity, they start simple (like PA(a) or PB(b)) but
eventually involve all rvs (like PC|AB(c|a, b)).
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Conditional independence
To factorise a joint probability like PAB(a, b) into parts that are
‘simpler’ (i.e., involve fewer rvs) such as PA(a) × PB(b) we need to
assume statistical independence of A and B.

When independence is ‘licensed’ in a specific context, we say it is a
conditional independence. For example: if
PAB|C(a, b|c) = PA|C(a|c)PB|C(b|c) we have assumed that A is
independent of B given C.3

Examples: i) to say that one’s grade in this course is independent
of the weather in November; ii) to say that the number of students
and the identity of the teaching staff are independent of one
another given the course syllabus; iii) to say that in an
auto-complete application, the next word depends on the current
word, but not on the one before that; and many other examples.

3The notation A ⊥ B | C is another way to express this conditional independence.
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Tractability in mind

Some (maybe most) conditional independences are not very
realistic, rather they are needed for feasibility.

Regardless of which probability factors we represent directly (i.e.,
we store and estimate), together they induce a joint distribution
over all variables, and probability calculus tells us how we can
recombine the elementary probability factors we have to answer
any probability query for those variables.

So, while we will be storing/representing only the elementary
factors, we will be able to—on demand—spend some computation
to obtain any other probability we may ever need.

Wilker Aziz NTMI/NLP1 2023/24 - PGMs (directed) 10



Applications

The ability to factorise and answer probability queries has major
applications in NLP and all of machine learning.

For example, we will soon be looking into answering conditional
probability queries about a class Y = y given a large document
X = x. As we shall see, it is not viable to store a table of
probabilities for every pair (x, y), but, by exploiting a certain
factorisation, we will be able to re-express probability queries about
PY |X=x, for practically any one given X = x, in terms of
probabilities stored in relatively small tables. For that we will need
knowledge of conditional independence and some probability
calculus.

The framework of choice to express these factorisations is that of
probabilistic graphical models (PGMs).
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Probabilistic Graphical Models

PGMs are a way to specify probability distributions over complex
sample spaces.

In this class we will concentrate on discrete random variables.

Sometimes the joint sample space of all variables we care about
grows combinatorially or is infinite or is simply too large for us to
represent a joint distribution without simplifications.

PGMs give us a language to precisely encode these simplifications.

Let’s start by seeing the tabular representation of a joint
distribution without any independence assumptions.
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Tabular representation
Suppose A, B, and C are binary random variables (rvs). How do
we represent a joint distribution PA,B,C without making
independence assumptions?

We create a table that lists all joint assignments of the rvs and
their probability values. Probabilities are constrained to be between
0 and 1, and the sum of all of these must be 1:

Joint assignments Probability values
a b c PABC(a, b, c)
0 0 0 PABC(0, 0, 0)
0 0 1 PABC(0, 0, 1)
0 1 0 PABC(0, 1, 0)
1 0 0 PABC(1, 0, 0)
0 1 1 PABC(0, 1, 1)
1 1 0 PABC(1, 1, 0)
1 0 1 PABC(1, 0, 1)
1 1 1 PABC(1, 1, 1)

Table: Tabular joint distribution over 3 binary rvs

Wilker Aziz NTMI/NLP1 2023/24 - PGMs (directed) 13



Tabular representation
Suppose A, B, and C are binary random variables (rvs). How do
we represent a joint distribution PA,B,C without making
independence assumptions?

We create a table that lists all joint assignments of the rvs and
their probability values. Probabilities are constrained to be between
0 and 1, and the sum of all of these must be 1:

Joint assignments Probability values
a b c PABC(a, b, c)
0 0 0 PABC(0, 0, 0)
0 0 1 PABC(0, 0, 1)
0 1 0 PABC(0, 1, 0)
1 0 0 PABC(1, 0, 0)
0 1 1 PABC(0, 1, 1)
1 1 0 PABC(1, 1, 0)
1 0 1 PABC(1, 0, 1)
1 1 1 PABC(1, 1, 1)

Table: Tabular joint distribution over 3 binary rvs
Wilker Aziz NTMI/NLP1 2023/24 - PGMs (directed) 13



Watch out!

A different question is where do the probability values come from?

But that is not a question of how to ‘represent the distribution’ it
is a question of how to obtain numerical values for the probabilities
in the tabular representation.

The challenges in representing the distribution in this format are
inherent to the sample space being so big, no matter whether
these numerical values are fixed by hand or estimated by a
computer programme from data.
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Exercise

How many probability values does it take to represent a joint
distribution over n random variables, where each one can take on 1
of K values, using a table as we did before while making no
independence assumptions?

It takes Kn probability values

Suppose n is the length of a document (say some 30 words) and K
is the number of words in English (say 100000). How bad is this?

Bad! (105)30 = 10150
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Graphs

Now that we agree that a tabular representation of a joint
distribution can get ridiculously large, we are going to talk about a
way to implicitly express these large objects using smaller ones. For
that we will need a bit of graphs and a bit of probability calculus.
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Directed graphical models or Bayesian networks (BNs)

A BN is a directed acyclic graph (DAG):
▶ nodes represent rvs

(content of node is the assignment)
▶ edges represent direct dependence
▶ there are no directed cycles

DAGs encode a set of conditional
independence statements: an rv is
conditionally independent of its
non-descendants given its parents.a

In the example DAG, descendants of C are
{D, F}, non-descendants of C are
{A, B, E}, parents of C are {B, E}.

aDescendants of X: nodes reachable by paths that begin at X.
Non-descendants: all nodes except X and its descendants. Parents:
non-descendants directly connected to X.

a

b

c

d

e

f

Figure: DAG

a

b

c

d

e

f

Figure: Not a DAG



Exercise: complete the table of relationships
a

b

c

d

e

f

Figure: DAG

Node Descendants Non-descendants Parents

A

{B, C, D, F } {E} ∅

B

{C, D, F } {A, E} {A}

C

{D, F } {A, B, E} {B, E}

D

{F } {A, B, C, E} {C}

E

{C, D, F } {A, B} ∅

F

∅ {A, B, C, D, E} {D, E}

Table: Relationships

Descendants of X: nodes reachable by paths that begin at X. Non-descendants: all nodes except X and its
descendants. Parents: non-descendants directly connected to X.



Exercise: complete the table of relationships
a

b

c

d

e

f

Figure: DAG

Node Descendants Non-descendants Parents

A {B, C, D, F } {E} ∅
B {C, D, F } {A, E} {A}
C {D, F } {A, B, E} {B, E}
D {F } {A, B, C, E} {C}
E {C, D, F } {A, B} ∅
F ∅ {A, B, C, D, E} {D, E}

Table: Relationships

Descendants of X: nodes reachable by paths that begin at X. Non-descendants: all nodes except X and its
descendants. Parents: non-descendants directly connected to X.



Examples of BNs
Assumptions: these are variables that matter, they depend on one
another as shown in the DAG.

Alarm on

Bus late

Over slept

On time

Figure: Students being on time
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Examples of BNs
Assumptions: these are variables that matter, they depend on one
another as shown in the DAG.

Cloudy

Sprinkler Rain

Wet grass

Figure: Wet grass on campus
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Conditional independence in BNs
Consider A, B, and C, due to chain rule we can write

PA,B,C(a, b, c) = PA(a)PB|A(b|a)PC|AB(c|a, b) (1)

and recall, we can use any other order.
But if we are told the assumptions in this DAG hold

ba c

Figure: BN G

then we can simplify it

PA,B,C(a, b, c) = PA(a)PB|A(b|a)PC|AB(c|a, b) (2)
G= PA(a)PB|A(b|a)PC|B(c|b) (3)

The last equality holds under the assumptions expressed in G, namely,
that C is independent of non-descendants {A} given its parents {B}
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Chain rule for Bayesian networks
Chain rule (in general)

PX1,...,Xm(x1, . . . , xm) =
m∏

i=1
PXi|X<i

(xi|x<i) (4)

Chain rule for Bayesian networks

PX1,...,Xm(x1, . . . , xm) =
m∏

i=1
PXi|PaXi

(xi|paxi
) (5)

where
▶ X<i is the sequence of rvs up until but not including Xi,

and x<i is its assignment
▶ PaX set of rvs parents of X

▶ pax assignments of parents of X = x
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Representing BNs
For each random variable, conditioned on assignments of its parents in
the BN, we need a conditional probability distribution (CPD), which we
represent in tabular form. Thus for binary rvs ba c , we have
▶ 1 cpd over A: PA (it ‘conditions’ on nothing)
▶ 2 cpds over B | A: PB|A=0 and PB|A=1

▶ 2 cpds over C | B: PC|B=0 and PC|B=1

Exercise: for this BN, list all CPDs in tabular form:

A PA

0 PA(0)
1 PA(1)

A B PB|A

0 0 PB|A(0|0)
0 1 PB|A(1|0)

1 0 PB|A(0|1)
1 1 PB|A(1|1)

B C PC|B

0 0 PC|B(0|0)
0 1 PC|B(1|0)

1 0 PC|B(0|1)
1 1 PC|B(1|1)
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Exercise
A is binary, B is 3-valued, and C is 4-valued.
This is the BN ba c . List the cpds:

A PA

0 PA(0)
1 PA(1)

A B PB|A

0 0 PB|A(0|0)
0 1 PB|A(1|0)
0 2 PB|A(2|0)

1 0 PB|A(0|1)
1 1 PB|A(1|1)
1 2 PB|A(2|1)

B C PC|B

0 0 PC|B(0|0)
0 1 PC|B(1|0)
0 2 PC|B(2|0)
0 3 PC|B(3|0)

1 0 PC|B(0|1)
1 1 PC|B(1|1)
1 2 PC|B(2|1)
1 3 PC|B(3|1)

2 0 PC|B(0|2)
2 1 PC|B(1|2)
2 2 PC|B(2|2)
2 3 PC|B(3|2)

Wilker Aziz NTMI/NLP1 2023/24 - PGMs (directed) 23



Exercise
A is binary, B is 3-valued, and C is 4-valued.
This is the BN ba c . List the cpds:

A PA

0 PA(0)
1 PA(1)

A B PB|A

0 0 PB|A(0|0)
0 1 PB|A(1|0)
0 2 PB|A(2|0)

1 0 PB|A(0|1)
1 1 PB|A(1|1)
1 2 PB|A(2|1)

B C PC|B

0 0 PC|B(0|0)
0 1 PC|B(1|0)
0 2 PC|B(2|0)
0 3 PC|B(3|0)

1 0 PC|B(0|1)
1 1 PC|B(1|1)
1 2 PC|B(2|1)
1 3 PC|B(3|1)

2 0 PC|B(0|2)
2 1 PC|B(1|2)
2 2 PC|B(2|2)
2 3 PC|B(3|2)

Wilker Aziz NTMI/NLP1 2023/24 - PGMs (directed) 23



Exercise: cost of representation
Consider a joint distribution over 6 binary random variables.

Without making conditional independence assumptions, what is the size of a
tabular representation of such a joint distribution?

We have 6 variables, each binary, with no conditional independences, we have
to specify a probability value for each and every outcome in the joint sample
space directly. This leads to the need for a table with 26 probability values in it.

Now we decide to make the conditional independences stated in the following
BN, what is the cost of a tabular representation of the joint distribution?

a

b

c

d

e

f

Figure: DAG

The assumptions in the BN make some
variables independent of one another, this
means that we can store smaller CPDs and
compose them together via probability calculus
whenever we need the probability of an
arbitrary outcome in the joint sample space.
PA has costs 2 because it has no parents, PB|A
has cost 2 × 2 = 4, PC|BE has cost 23 = 8,
PD|C has cost 4, PE has cost 2 and PF |D has
cost 4. A grand total of 24 (instead of 26 = 64)
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Exercises

c

a b

c

a b

a

b

c

d

Figure: Write down the minimal factorisation (i.e., factorisation in terms
of elementary factors).

1. PABC(a, b, c) = PC(c)PA|C(a|c)PB|C(b|c)
2. PABC(a, b, c) = PA(a)PB(b)PC|AB(c|a, b)
3. PABCD(a, b, c, d) = PA(a)PB|A(b|a)PC|A(c|a)PD|BC(d|b, c)
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Inferences

ba c

Figure: Example of BN

The BN tells us the CPDs we have to represent explicitly (i.e.,
store probabilities for). For this example: PA, PB|A and PC|B.

What if we want to reason about something that’s not PA or PB|A
or PC|B? Such as
▶ PB or PC

▶ or PB|C or PA|B or PA|C or PC|A
▶ or PBC|A or PAB|C or PAC|B
▶ or PABC

For whatever combination of variables, we use rules of probability!
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It all starts with the joint distribution

Remember that the BN is coding a set of assumptions that gives
us a joint distribution, for the example this distribution assigns
probability

PABC(a, b, c) = PA(a)PB|A(b|a)PC|B(c|b) (6)

to an outcome (a, b, c) in the joint sample space.

If we have to answer a query about any such joint outcome, we
could directly look those probabilities up in their corresponding
cpds and multiply them together.

Now let’s see how we use probability calculus to get to the
probability of each and every outcome involving any subset of
these three rvs.
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Conditional probability and marginalisation
If we have representations for PA, PB|A, and PC|B. Infer PB|C :

▶ start from the definition of conditional probability

PB|C(b|c) =
PBC(b, c)

PC(c)

▶ marginalise A in the numerator

PB|C(b|c) =

∑
a

PABC(a, b, c)
PC(c)

▶ factorise the joint distribution to introduce the cpds we have

PB|C(b|c) =

∑
a

PA(a)PB|A(b|a)PC|B(c|b)
PC(c)

▶ rearrange the terms for convenience

PB|C(b|c) =
PC|B(c|b)

∑
a

PA(a)PB|A(b|a)
PC(c)

▶ we would be able to compute every term that appears in the numerator by
looking up cells of our elementary cpds
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Continuation
▶ we are here, where the denominator requires a probability that’s not in any of

the elementary cpds

PB|C(b|c) =
PC|B(c|b)

∑
a

PA(a)PB|A(b|a)
PC(c)

▶ now let’s re-express the marginal probability in the denominator

PC(c) =
∑

a

∑
b

PABC(a, b, c)

=
∑

a

∑
b

PA(a)PB|A(b|a)PC|B(c|b)

=
∑

a

PA(a)
∑

b

PB|A(b|a)PC|B(c|b)

▶ substitute it back in the conditional to see that every term in it is now
something we can look up in a table

PB|C(b|c) =
PC|B(c|b)

∑
a

PA(a)PB|A(b|a)∑
a

PA(a)
∑

b
PB|A(b|a)PC|B(c|b)
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Exercise: probability calculus

Using the same BN as before, give expressions for the probability
of an outcome in any of the following marginals and conditionals:
▶ PB or PC

▶ or PB|C or PA|B or PA|C or PC|A
▶ or PBC|A or PAB|C or PAC|B

Once you’ve managed to represent a quantity in terms of
probabilities in elementary cpds, it’s okay to reuse it without
expanding its expression (for example, once you have an expression
for PB(b) it’s okay to reuse PB(b) in other expressions such as
PA|B(a|b) = PAB(a,b)

PB(b) , but in this case you would still need to find
an expression for PAB(a, b)).
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What Next?

We are going to apply this knowledge to design text classifiers,
language models, taggers and more.

NLP1 students: the next slide is an exercise on naive Bayes
classifiers, you’ve already seen the NBC, but now you will give it a
PGM treatment.

NTMI students: you can ignore the next slide/exercise as this
model and application will be covered very carefully in class (and
in our lecture notes5).

5https://wilkeraziz.github.io/assets/pdfs/generative.pdf
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Exercise - NBC
A probabilistic text classifier is a system built upon a conditional distribution
PY |X=w1:N where X = ⟨W1 = w1, . . . , WN = wN ⟩ is an observed document
(expressed as a sequence of N random words drawn from a finite vocabulary
containing V symbols) and Y is a random variable taking on one of K classes
(e.g., positive, neutral, negative). A naive Bayes classifier (NBC) is a form of
generative classifier built upon the joint distribution PXY over the
cross-product space of all documents (all finite-length word sequences) and
classes. The NBC makes a key conditional independence assumption, namely,
that given the class Y = y, the words in a document are independent of one
another. That is, Wi ⊥ Wj | Y for j ̸= i.6

1) Make a diagram of the conditional independences in NBC. 2) How many
cpds are necessary to represent this model in tabular form, and how many
probability values in total? 3) Express the joint probability PXY (w1:N , y) of a
given document w1:N and its class y in terms of the elementary factors of the
model. 4) Express the probability of the class Y = y given the document
X = w1:N , again in terms of elementary factors of the model.7

6Most people don’t need this information, but, if you are wondering, words are also assumed to be independent
of their own position in the sequence.

7For this exercise, you can pretend N = 3 if that makes it easier for you.
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Solution - NBC

y

w1

w2

w3

y

wn

N

Figure: 1) NBC for 3 words (left) and generalisation to N words (right;
the plate can be thought of as a loop where n varies from 1 to N).

2) We need 1 cpd for PY and K cpds for W |Y (i.e., PW |Y =1, . . . , PW |Y =K),
assuming the vocabulary of known words has size V we have K + K × V
probabilities.

3) PY X(y, w1:N ) = PY (y)
∏N

n=1 PW |Y (wn|y), where W is a random variable
taking on values in the vocabulary of known words.

4) By conditional prob: PY |X(y|w1:N ) = PY X (y,w1:N )
PX (w1:N ) . The numerator is the

expression in (3). The denominator is a marginal of that expression:
PX(w1:N ) =

∑K

k=1 PY X(k, w1:N ) =
∑K

k=1 PY (k)
∏N

n=1 PW |Y (wn|k).
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